
 CAPSTONE PROJECT FINAL REPORT

Submitted to
Computer Science Department

College of Computing Sciences and Engineering
Kuwait University

Advisor

Dr. Hussain AlMohri

Group Members
Abdulrahman Fattah 2142129395 {Member}

Mohammed AlHaddar 2142127691 {Member}

Sheikha AlMishrie 2131110650 {Member}

Monday, 25th of November 2019

DataShop

Scalable Shopping System

Acknowledgements
Special thanks to Dr. Hussain AlMohri for his guidance and supervision on the project, in

addition to holding our backs financially and spiritually. Without the guidance of Dr. AlMohri,

we would not have reached this far and we would still struggling with the tiniest bugs and issues.

We would also like to thank Dr. Mohammad Samaoui for his efforts in explaining the basics

of Amazon Web Services (AWS) and introducing us to making basic scalable cloud applications.

The team also appreciates Fatma AlKandari’s efforts for suggesting and designing the

system’s logo.

We would also like to express our gratitude to all of our friends and colleagues at the

computer science department for elaborating ideas with us and giving us support whenever

possible.

TABLE OF FIGURES .. 6

TABLE OF TABLES .. 8

1. Introduction and Background ... 10

1.1 Background ... 11

2. User and System Requirements .. 13

2.1 Requirements Elicitation Approach ... 13

2.2 Requirements Specification ... 15

3. System Architecture ... 35

4. System Design Artifacts ... 39

4.1. Design Decisions ... 40

4.2. Technical Descriptions ... 45

4.2.1 TECHNICAL ISSUES .. 45
4.2.2 SEARCH ALGORITHM .. 46

4.3. User Interface ... 47

4.3.1 Home .. 47
4.3.2 Login ... 48
4.3.3 Registeration .. 49
4.3.4 Cart ... 50
4.3.5 Checkout ... 51
4.3.6 Product Details ... 52
4.3.7 Store ... 53
4.3.8 Search ... 54
4.3.9 Categories Menu .. 55
4.3.10 Profile ... 56
4.3.11 Order History .. 57
4.3.12 Product Add .. 58
4.3.13 Store Creation ... 59
4.3.14 Change store ... 60
4.3.15 Order Managment .. 61
4.3.16 Favorite List .. 62

5. Modifications of the Original Plan ... 63

5.1 Requirements ... 63

5.2 System Design ... 68

6. Implementation Framework and Details .. 69

6.1. Frameworks and Platforms .. 69

6.2. Component and Code Reuse .. 70

6.3. Case Tools .. 72

7. Testing .. 73

7.1. Testing Plan .. 73

7.2. Unit Test Cases ... 74

TABLE OF CONTENTS

7.3. Integration Tests ... 82

7.4. Stress and Performance Tests ... 85

7.4.1 T3.MICRO (2 CPU) EC2, t3.micro DB (2 CPU) .. 86
7.4.2 m5.Xlarge (4 CPU) EC2, t3.micro DB (2 CPU) .. 90
7.4.3 m5.4xlarge (16 CPU) EC2, t3.2xlarge DB (8 CPU) ... 94
7.4.4 m5.8xlarge (32 CPU) EC2, m5.4xlarge DB (16 CPU) ... 98
7.4.5 m5.4xlarge (16 CPU) EC2, m5.4xlarge DB (16 CPU) (4 Read Replicas) ... 102

7.5 end-user Tests .. 106

7.5.1 System Usability Scale .. 107
7.5.2 Use Case Usability Scale .. 110
7.5.3 Further Questions ... 114

8. Tools and Component Reuse .. 123

9. Machine Learning ... 124

9.1 Collecting Data .. 124

9.2 Geohash Clustering ... 125

9.3 K-Means .. 129

9.4 More on Machine Learning ... 132

10. Conclusions and lessons learned .. 133

11. Team Members Tasks and Contributions .. 134

References ... 135

TABLE OF FIGURES

FIGURE 1REQUIREMENTS ELICITATION SEQUENCE DIAGRAM .. 14
FIGURE 2 PROTOTYPE SEQUENCE DIAGRAM ... 15
FIGURE 3 THE STORE ACTIVITY DIAGRAM ... 31
FIGURE 4 PRODUCTS LISTING AND VIEW ACTIVITY DIAGRAM. .. 31
FIGURE 5 THE TICKET SYSTEM ACTIVITY DIAGRAM. .. 32
FIGURE 6 SEARCH STORES AND PRODUCT-WISE. ... 32
FIGURE 7 FAVORITE LIST IMPLEMENTATION ACTIVITY DIAGRAM. .. 33
FIGURE 8 ADMIN CONFIGURATION ACTIVITY DIAGRAM. .. 33
FIGURE 9 ADD PRODUCTS TO THE SYSTEM BY STORE-OWNER ACTIVITY DIAGRAM. ... 33
FIGURE 10 PRODUCT ANALYTICS ACTIVITY DIAGRAM .. 34
FIGURE 11 THE NEW SYSTEM ARCHITECTURE FROM A HIGH VIEW .. 35
FIGURE 12 NEW INTERNAL ARCHITECTURE INSIDE EC2 INSTANCE ... 38
FIGURE 13 THE SYSTEM COMPONENT DESIGN. ... 39
FIGURE 14 DFA FOR THE ORDER STATE ... 42
FIGURE 15 DATASHOP MODELS’ RELATIONS ... 44
FIGURE 16 HOME PAGE .. 47
FIGURE 17 MOBILE HOME PAGE ... 47
FIGURE 18 LOGIN .. 48
FIGURE 19 MOBILE LOGIN ... 48
FIGURE 20 CREATE ACCOUNT .. 49
FIGURE 21 MOBILE CREATE ACCOUNT .. 49
FIGURE 22 CART .. 50
FIGURE 23 MOBILE CART ... 50
FIGURE 24 CHECKOUT PROCESS .. 51
FIGURE 25 MOBILE CHECKOUT ... 51
FIGURE 26 PRODUCT DESCRIPTION ... 52
FIGURE 27 MOBILE PRODUCT DESCRIPTION ... 52
FIGURE 28 STORE DETAILS .. 53
FIGURE 29 MOBILE STORE DETAILS ... 53
FIGURE 30 SEARCH .. 54
FIGURE 31 MOBILE SEARCH .. 54
FIGURE 32 CATEGORIES MENU ... 55
FIGURE 33 MOBILE CATEGORIES MENU .. 55
FIGURE 34 PROFILE PAGE .. 56
FIGURE 35 MOBILE PROFILE PAGE ... 56
FIGURE 36 ORDER HISTORY ... 57
FIGURE 37 MOBILE ORDER HISTORY ... 57
FIGURE 38 ADD PRODUCT ... 58
FIGURE 39 MOBILE ADD PRODUCT .. 58
FIGURE 40 STORE CREATION ... 59
FIGURE 41 MOBILE STORE CREATION ... 59
FIGURE 42 SWITCH STORES ... 60
FIGURE 43 MOBILE SWITCH STORES ... 60
FIGURE 44 ORDERS MANAGEMENT .. 61
FIGURE 45 MOBILE ORDERS MANAGEMENT ... 61
FIGURE 46 FAVORITE LISTS ... 62
FIGURE 47 MOBILE FAVORITE LISTS .. 62

FIGURE 48 MODEL VIEW TEMPLATE PATTERN .. 69
FIGURE 49 UNIT TEST COVERAGE. ... 81
FIGURE 50 THE RELATIONSHIP BETWEEN THE THROUPUT AND RESPONSE TIME. .. 88
FIGURE 51 THE RELATIONSHIP BETWEEN THE RESPONSE TIME AND THE NUMBER OF INSTANCES. .. 88
FIGURE 52 THE RELATIONSHIP BETWEEN THE THROUPUT AND THE NUMBER OF INSTANCES. .. 89
FIGURE 53 THE RELATIONSHIP BETWEEN THE THROUGHPUT AND THE DATABASE CPU USAGE. .. 89
FIGURE 54 THE RELATIONSHIP BETWEEN THROUGHPUT AND NUMBER OF INSTANCES. .. 92
FIGURE 55 THE RELATIONSHIP BETWEEN THE THROUGHPUT AND THE RESPONSE TIME .. 92
FIGURE 56 THE RELATIONSHIP BETWEEN THE THROUGHPUT AND THE DABASE CPU UTILIZATION. .. 93
FIGURE 57 THE RELATIONSHIP BETWEEN NUMBER OF INSTANCES AND RESPONSE TIME ... 93
FIGURE 58 THE RELATIONSHIP BETWEEN THE THROUGHPUT AND THE CURRENT NUMBER OF INSTANCES. ... 96
FIGURE 59: THE RELATIONSHIP BETWEEN THROUGHPUT AND RESPONSE TIME. ... 96
FIGURE 60 THE RELATIONSHIP BETWEEN THE THROUGHPUT AND THE DB CPU UTILIZATION. ... 97
FIGURE 61 THE RELATIONSHIP BETWEEN THE CURRENT NUMBER OF INSTANCES AND THE RESPONSE TIME .. 97
FIGURE 62 THE RELATIONSHIP BETWEEN THE THROUGHPUT AND THE NUMBER OF INSTANCES. .. 100
FIGURE 63: THE RELATIONSHIP BETWEEN THE THROUGHPUT AND THE RESPONSE TIME. ... 100
FIGURE 64 THE RELATIONSHIP BETWEEN THE RESPONSE TIME AND THE CURRENT NUMBER OF INSTANCES .. 101
FIGURE 65 THE RELATIONSHIP BETWEEN THE RESPONSE TIME AND THE DB CPU ... 101
FIGURE 66 THE RELATIONSHIP BETWEEN RESPONSE TIME AND THROUGHPUT ... 104
FIGURE 67 RELATIONSHIP BETWEEN THE RESPONSE TIME AND THE CURRENT NUMBER OF INSTANCES .. 104
FIGURE 68 RELATIONSHIP BETWEEN THE RESPONSE TIME AND THE CURRENT NUMBER OF INSTANCES 105
FIGURE 69 THE RELATIONSHIP BETWEEN THE THROUGHPUT AND THE AVERAGE DB CPU .. 105
FIGURE 70 SYSTEM USABILITY SCALE TESTING STATISTICS ... 107
FIGURE 71 SYSTEM USABILITY SCALE TESTING STATISTICS .. 108
FIGURE 72 SYSTEM USABILITY SCALE TESTING STATISTICS ... 109
FIGURE 73 USE CASE USABILITY SCALE TESTING STATISTICS ... 110
FIGURE 74 USE CASE USABILITY SCALE TESTING STATISTICS .. 111
FIGURE 75 USE CASE USABILITY SCALE TESTING STATISTICS ... 112
FIGURE 76 USE CASE USABILITY SCALE TESTING STATISTICS ... 113
FIGURE 77 FURTHER QUESTIONS TESTING STATISTICS ... 114
FIGURE 78 FURTHER QUESTIONS TESTING STATISTICS ... 115
FIGURE 79 FURTHER QUESTIONS TESTING STATISTICS ... 116
FIGURE 80 FURTHER QUESTIONS TESTING STATISTICS ... 117
FIGURE 81 FURTHER QUESTIONS TESTING STATISTICS ... 118
FIGURE 82 FURTHER QUESTIONS TESTING STATISTICS ... 119
FIGURE 83 FURTHER QUESTIONS TESTING STATISTICS ... 120
FIGURE 84 FURTHER QUESTIONS TESTING STATISTICS ... 121
FIGURE 85 FURTHER QUESTIONS TESTING STATISTICS ... 122
FIGURE 86 FIRST LEVEL OF GEOHASH .. 126
FIGURE 87 5TH LEVEL OF GEOHASH ... 126
FIGURE 88 GENERATED PIVOT TABLE ... 127
FIGURE 89 HEATMAP OF THE LOG ACTIVITY ... 128
FIGURE 91 PRODUCTS RECOMMENDATION INSIDE PRODUCT DETAIL VIEW. .. 131
FIGURE 90 ANOTHER PRODUCTS RECOMMENDATIONS FOR THE SAME USER. ... 131
FIGURE 92 GENERAL RECOMMENDATIONS BASED ON GEOLOCATION. ... 132
FIGURE 93 TEAM CONTRIBUTIONS CHART. .. 134

TABLE OF TABLES

TABLE 1 UNIT TEST RESULTS TABLE .. 74
TABLE 2 INTEGRATION TESTS RESULTS TABLE. ... 82
TABLE 3 T3.MICRO (2CPU) RAW TEST DATA .. 87
TABLE 4: M5.XLARGE (4CPU) EC2, T3.MICRO DB(2CPU) RAW DATA ... 91
TABLE 5:M5.4XLARGE (16 CPU) EC2, T3.2XLARGE DB (8 CPU) RAW TEST DATA ... 95
TABLE 6:M5.8XLARGE (32 CPU) EC2, M5.4XLARGE DB (16 CPU) RAW TEST DATA .. 99
TABLE 7: M5.4XLARGE (16 CPU) EC2, M5.4XLARGE DB (16 CPU) (4 READ REPLICAS) RAW TEST DATA 103

Abstract
Begun in September 2019, the DataShop system is an online e-commerce website that

features scalability, reusability, extensibility, and intelligence. The system is hosted on Amazon

Web Services (AWS) to provide maximum scalability by using EC2’s with the RDS database. The

system is also designed to be reusable by relying mainly on components that support coupling and

cohesion by crafting and dividing the functionality of the system carefully on its components. The

component design of the system allows the system to be extensible in every manner, in addition to

using an extensible framework which is Django and relying mainly on an open-source external

component. Finally, the system uses machine learning to cluster users and products using hash

maps to better categorize locations and offer products suggestions to the users of the system

depending on their current location and browsing history.

Keywords: Scalability, Reusability, Machine Learning, Extensibility, E-Commerce, Data, Shop.

The e-commerce industry has changed the way business operations are carried out. E-

commerce is a huge platform that is rapidly growing at unimaginable levels worldwide. Although

a lot of online shopping systems are available, it is still reasonable for the team to build a new

shopping system, called DataShop. As the name suggests, DataShop is a secure, usable, and above

all portable and scalable online shopping platform. This report will go through a general

description of the project, the motivations behind it, the deliverables with detailed features and

design implementation, and the scope of work covered in the project.

First of all, Datashop is a website built by the Django framework using Python programming

language for the backend, while using HTML, JavaScript, and CSS for the frontend. The system

is deployed and hosted using Amazon Web Services to ensure maximum scalability and security.

The system relies mainly on components and reusability concepts where every component was

designed to be reusable and extensible by other developers of the system.

The system contains many features and functionalities that will be described in the coming

sections, where each feature pours in the bowl of scalability, reusability, extensibility, and machine

learning.

Datashop offers its users many features including suggesting products for shoppers using

machine learning algorithms that are based on users’ behavior and locations, while at the same

time offers sellers with full control over their stores and products. The system was designed to be

simple to use while offering straight forward functions for both types of users.

Many features and details regarding the system will be discussed in the coming chapters

with full tests descriptions as a proof of concept that the system works as expected and it achieved

all the requirements.

The main motivation behind this project is to create a system that can handle a huge number

of requests and operations at a time to ensure the best user experience in addition to offering

suggestions to users based on machine learning algorithms to enrich the usage of the system.

This report includes the discussion and description of the final deliverable of the project

which includes this report, the full working code, testing to prove correctness, and a live demo to

show how each function can be used and how it works.

1. INTRODUCTION AND BACKGROUND

1.1 BACKGROUND

 The project is built mainly to serve the E-Commerce field which is focused on offering

online shopping experience for users worldwide neglecting the location and obstacles between the

seller and the shopper. E-Commerce is a system of purchases and sales of products and services,

transfers of money and information via electronic media (Internet). This enables people to do

business without distance and time barriers (Bhalla, 2019).

 Different eCommerce business solutions may be required or used by different types of users,

including online business models. Many different approaches and methods must be applied by

different business types to ensure the full user experience. E-commerce systems include:

• B2B businesses

• B2C businesses

• Affiliate marketing business

• Google AdWords and AdSense marketing

• Online auction selling

• Web marketing

 E-commerce system work by providing many functionalities that are pretty much like the

offline (actual) stores and retails work, but with a broader and wider scale to include users from

all over the world. Such systems rely mainly on three main components which are the browsing

components, the order component, and the shipping component.

The browsing component enables shoppers to browse the digital stores and see the different

types of products they offer; this includes adding media to present the product to a shopper and

appropriate information for each product. Then, the shopper can choose a set of products to be

added to an order and the order processing component takes place.

The order component handles the management of orders by shoppers where they can see the

products they ordered, see proper information about the order such as total price and number of

products, and proceed to checkout and pay to receive the order at their doorsteps.

The shipping component is responsible for transmitting the order to the sellers alongside

with the shopper information so that sellers can prepare the order, deliver it to the shopper, and

further communicate with the shopper regarding the order that connects the two entities (Bhalla,

2019).

 Taking into account how E-commerce systems work, the project had to be built to provide

the mentioned above functions with extra features to the potential users. The project had to follow

a software engineering process to ensure that it can be constructed on time and delivered as

expected. The chosen and followed software engineering process is Scrum with is wildly used and

known to deliver a project in increments and allow multiple developers to work on the project

effectively.

Taken from the official website of Scrum, “Scrum is a framework within which people can

address complex adaptive problems, while productively and creatively delivering products of the

highest possible value.” (ScrumTeam, 2019).

 The scrum framework is heuristic; it is based on continuous learning and adaptation to

factors. This recognizes that at the start of a project the team doesn't know everything and will

learn through practice. With the re-prioritization embedded into the system and short release

cycles, Scrum is designed to help teams to adjust themselves to changing conditions and user

demands in a natural way.

 Scrum is not completely rigid, although it is structured. It can be applied to fit each project’s

requirements and fulfill its design and implementation. To use Scrum successfully, there are many

hypotheses about the precise way scrum teams can work, but after more than a decade of helping

agile teams get their work developers learned that the priority should always be clear

communication, openness and a dedication to continuous change in any project, which ensures the

balance.

 Scrum has many artifacts that must be created to ensure the best results from it. The

following list presents each one with its description:

• Product Backlog is the master list of work that needs to get done maintained by the

product owner or product manager. This is a dynamic list of features, requirements,

enhancements, and fixes that acts as the input for the sprint backlog.

• Sprint Backlog is the list of items, user stories, or bug fixes, selected by the

development team for implementation in the current sprint cycle.

• Increment: (or Sprint Goal) is the usable end-product from a sprint (AtlassianTeam,

2019)

 This section contains brief descriptions and details about the project's different features and

requirements and the approach that the team followed to elicit them, in addition to some figures

that show how did the team reach the point where everything is clear and applicable.

2.1 REQUIREMENTS ELICITATION APPROACH

 The requirements elicitation took a set of approaches and methods to come up with the final

list of requirements for the project. The methods used in this process were all shared by the

stakeholders and each member/method contributed to the requirements discovered and agreed on.

The main requirements elicitation methods used to gather requirements are:

Prototyping, which is the main requirements elicitation approach the team uses for eliciting

requirements. This approach involves creating a prototype, exposing it to the stakeholders of the

project, and taking feedback to modify/add requirements. The prototype created for such a job is

not a through away one, the actual system is going to be built using increments on this prototype

which contains the base requirements for the system. Figure 2 shows the prototyping requirements

elicitation steps.

 Brainstorming, which is done by the whole team in a way that best suits the project idea

and the domain of e-commerce projects. The brainstorming was held at the start of the project by

the team to try to figure out what requirements are mandatory and which of them can be achieved

taking into consideration the team member's experiences, guts, and knowledge.

 Document Analysis, which was conducted by the team to better visualize the domain of

interest and have a general knowledge about the do and don’ts of the domain. The document

analysis included reading and scanning of many scientific papers and researches focused on the

domain of interest.

 Interface Analysis, which each team member was exposed to a certain set of e-commerce

website and each one extracted a set of requirements that are considered essential to these websites.

 Interviews, which included the gathering of user stories which on the other hand were

collected from a set of stakeholders interested or already involved in the domain of e-commerce.

The users whom the stories were collected from were either admins, store owners, or regular

2. USER AND SYSTEM REQUIREMENTS

customers who use online shopping in their daily life. The team got a satisfiable set of user stories

which will be presented in later sections.

 Requirements Workshops, which were conducted partially by the team members to better

understand the system and extract requirements.

 Figure 1 shows a sequence diagram for how the requirements elicitation approach occurred.

FIGURE 1REQUIREMENTS ELICITATION SEQUENCE DIAGRAM

2.2 REQUIREMENTS SPECIFICATION

 The requirements specification is a process under which the description of what the system

will do and how it is expected to perform is conducted. The SRS is also used to describe the

functionality the users and the business going to use in the project. Taking this into consideration,

an SRS must include a purpose, and overall description to be a reference for the project, and

requirements specification of the system/software as a whole.

FIGURE 2 PROTOTYPE SEQUENCE DIAGRAM

i) Purpose of The Requirements Specification

 The purpose of the requirements specification if to have a reference on the requirements

the system needs and how the system is going to work.

ii) Description of The Requirements

 The system is mainly described as a smart, reliable e-commerce shopping website that

serves store owners and customers by following the B2C business model. The system is an

interactive system, which means that customer behavior can be analyzed to give the best

experience and suggests certain products to each customer. The system also has all the essential

functionalities of an online shopping system which are going to be listed in the following sections.

Providing such functionalities and features, the system is going to be hosted on Amazon Web

Services which provides a secure and reliable environment for websites to run on and function

safely.

 Moreover, the system is going to be built to be used in two modes, plug-and-play, and

configure-and-play modes. The plus-and-play mode is achieved by loading the system with

default configuration that best suits the general use of such a system and which an admin can run

in one click. The configure-and-play mode is achieved by providing a configuration tool for the

system before it starts such that system administrators can toggle preferred settings and features

before they run the system.

iii) Intended Audience of the Study

 This SRS is intended to all the stakeholders involved in this project, especially to the

Capstone Committee who are the main customer of this project.

iv) Intended Use of the Study

 The use of this SRS is mainly as a reference and a grading sheet for the system. The

developers are going to use it as a reference on what to implement and how to do so, while the

project manager (the supervisor) and the customer (the CPC) will use it as a documentation and a

grading sheet to mark progress on the project.

v) Scope of The Study

 The scope of the SRS is the whole system, starting from the hardware specification, and

ending with normal customers’ requirements.

 vi) System features and Requirements

a. System Features

• Search for e-stores, and furthermore search for products using the website. Meaning that the

system users will be able to perform a search based on e-stores or products. The search for

product functionality is performed across all stores, giving the view of the system to the user

as one giant e-store.

• A safe and trusted payment method that connects all the e-store under one receipt which the

user can pay once for all the stores. The system will have a gateway allowing other interfaces

to be integrated to offer the functionality of the payment system and will be connected to

more payment gateways if time allows.

• Generic store creation for the e-store owners under which they can customize their store pages

and put their flavor of design. The generic store design will handle the look and feel of each

e-store homepage and give the e-store owners the ability to customize as much as they want

while they can integrate their contact information as easily as possible. The customization of

the e-store page will be wizard-driven.

• Analysis of user behavior and displaying product recommendations. This feature is created

to serve both customers and business owners in a way that shows recommended products to

the customers while at the same time advertise for the e-store owners.

• Custom favorite list creation for users, in which users can add e-stores and products for private

a list associated with their accounts. This list is per user and can be viewed using smart filters.

• Order status update and order panel for the store owners, under which each user will be able

to follow the status of his orders while store owners can update the status of the products

manually using the system.

• Provide direct contact with the e-store owners by serving contact information on the e-store

page (email address, social media, etc...), in addition to ticket submission and tracking their

status by the owners.

• Order history for a future revision, so that the user can revise and reorder the same order

again.

• Display detailed information on each product so that users have no doubts about a product.

• Provide user accounts such users can create accounts and use the system. The user accounts

hold user’s information such as name, address, preferred products, and lists. The user

accounts are also used for tracking orders and revising them.

• Has categorization on e-stores and products. In other words, the system provides browsing

by categorizing depending on the e-stores or products.

• A scalable system can hold a variable number of user requests without the need for human

interaction. The system will use smart and machine learning algorithms to adjust the system

state so that it can handle the current number of user requests.

• It provides an email notification system to warn and communicate with users of the system.

The notification system is built on the email service and will notify the customers of any

update to their orders while notifying the store owners of any newly received order.

• System admin interface to configure and control the system. This interface will be for admins

only and will provide them with the general settings and configuration facility to configure

and adjust the system state.

b. System Requirements

The requirements of the whole system are going to be classified and listed in the section.

Each requirement is going to be listed according to source (prototyping, brainstorming,

interface/documents analysis, workshops), type (functional, nonfunctional), and category

(security, interface, performance, network, data).

Number 1

Content Email must be the login key to the system

Source Brainstorming

Type Functional

Category Interface

Number 2

Content Password must be strong or at least has medium strength

Source Brainstorming

Type Nonfunctional

Category Security

Number 3

Content Products must be able to have multi images

Source Interface Analysis

Type Functional

Category Interface

Number 4

Content Products must be categorized on a minimum of 2 levels

Source Document Analysis

Type Functional

Category Interface

Number 5

Content Multi-currency support can be configured at the admin initialization of the system

Source Workshops

Type Functional

Category Interface

Number 6

Content Each user must have a profile

Source Prototyping

Type Functional

Category Interface

Number 7

Content Shoppers and store owners share one module, a user can be both a shopper and a store

owner

Source Workshops

Type Functional

Category Interface

Number 8

Content Cart must auto calculate the total price of the products

Source Workshops

Type Functional

Category Interface

Number 9

Content Each product must have its page that holds its information

Source Interface Analysis

Type Functional

Category Interface

Number 10

Content Only logged in shopper can use the cart

Source Interface Analysis

Type Functional

Category Interface

Number 11

Content Stores can have their contact information point to all popular social networks in addition to

phone numbers.

Source Brainstorming

Type Functional

Category Interface

Number 12

Content When an order is shipped, it is automatically saved in history orders

Source Workshops

Type Functional

Category Interface

Number 13

Content The store owner can add, remove, and update products

Source Prototyping

Type Functional

Category Interface

Number 14

Content Shoppers can add/remove items to the cart

Source Prototyping

Type Functional

Category Interface

Number 15

Content Use Bootstrap to make the interface simple and elegant

Source Prototyping

Type Functional / Nonfunctional

Category Interface

Number 16

Content Sellers can register to the system by using a special signup page, the registration form

includes description, new business or not, have physical store or not and a logo

Source Prototyping

Type Functional

Category Interface

Number 17

Content Users (shoppers and anonymous) can browse all the stores in the system

Source Prototyping

Type Functional

Category Interface

Number 18

Content A store owner can have multiple stores in one account

Source Prototyping

Type Functional

Category Interface

Number 19

Content Multi-currency support for each store

Source Interface Analysis

Type Functional

Category Interface

Number 20

Content Storeowners can see analytics of their products

Source Workshops

Type Functional

Category Interface

Number 21

Content Provide a backend API for integration with other systems

Source Workshops

Type Nonfunctional

Category Interface

Number 22

Content Shopper can contact sellers using a ticket system which opens a semi-discussion between

the two entities.

Source Workshops

Type Functional

Category Interface

Number 23

Content System search can either be store-wise or product-wise.

Source Workshops

Type Functional

Category Interface

Number 24

Content Shoppers should be able to pay throughout the system to receive their orders

Source Workshops

Type Functional

Category Interface

Number 25

Content Anonymous users who don’t have an account can browse and use the system

Source Workshops

Type Functional

Category Interface

Number 26

Content User behavior should be analyzed for better product recommendations.

Source Workshops

Type Nonfunctional

Category Interface

Number 27

Content Shoppers can add products/stores to private favorite lists for easier access.

Source Workshops

Type Functional

Category Interface

Number 28

Content Both shoppers and sellers can track ordered by status updates using the system.

Source Workshops

Type Functional

Category Interface

Number 29

Content Past orders can be saved in order history and can be reordered again

Source Workshops

Type Functional

Category Interface

Number 30

Content Each shopper must have an address registered in the system before an order is initiated

Source Prototyping

Type Functional

Category Interface

Number 31

Content Allow predictive scaling on the backend (AWS) to handle system stress at peak times.

Source Workshops

Type Nonfunctional

Category Performance

Number 32

Content The system should be fast in terms of response to client requests.

Source Workshops

Type Nonfunctional

Category Performance

Number 33

Content The system interface should be simple and constructive

Source Interface Analysis

Type Nonfunctional

Category Interface

Number 34

Content Create an EC2 instance and host the system’s website on it.

Source Workshop

Type Nonfunctional

Category System

Number 35

Content Host the system on Docker

Source Prototype

Type Functional

Category System

Number 36

Content Host Docker on the EC2 instance

Source Prototype

Type Functional

Category System

Number 37

Content System requests will be logged using RDS by AWS, and the database engine that will be

used is PostgreSQL

Source Workshop

Type Functional

Category System

Number 38

Content Stores can be deactivated using profile

Source Prototype

Type Functional

Category System

Number 39

Content Empty search queries are not allowed in the system

Source Prototype

Type Functional

Category System

Number 40

Content Make the UI mobile friendly

Source Prototype

Type Functional

Category System

Number 41

Content Create a view for the store owner to view the sales of the store in a chart

Source Prototype

Type Functional

Category System

Number 42

Content Add a basic authorization module to your system such that every single view calls the

authorization

Source Prototype

Type Functional

Category System

Number 43

Content Restrict sellers to a fixed number of products added per hour. A user should not be allowed

to add 1000 products an hour,

Source Prototype

Type Nonfunctional

Category System

	

	

Number 44

Content Unified database for all instances

Source Workshops

Type Nonfunctional

Category System

	

	

	

Number 45

Content Unified storage(S3) for all instances

Source Workshop

Type Nonfunctional

Category System

Number 46

Content Implement registration access code that can be used to restrict the registration of shop

owners.

Source Brainstorming

Type Functional

Category Security

	

	

Number 47

Content Populate the database with multiple stores and with each store populated with

multiple products.

Source Workshop

Type Nonfunctional

Category Performance

	

	

Number 48

Content Find a methodology for logging data, now when the system logs data, it's

logging the UNIX timestamp, the path of the request, Http

method(GET/POST), remote address of the user, the users' ID, and location

of the request

Source Workshop

Type Nonfunctional

Category Security

	

Number 49

Content Create a load balancer to distribute traffic among servers and to increase the

reliability of the system.

Source Workshop

Type Nonfunctional

Category Performance

	

	

Number 50

Content Simulate user behavior, by preparing a questionnaire to seek feedback on the

experience of a group of people who tried using the system.

Source Brainstorming

Type Nonfunctional

Category Usability

	

	

Number 51

Content Use AWS RDS service to host the system database for more scalability

Source Workshop

Type Nonfunctional

Category Performance

	

c. Activity Diagrams of The Requirements

FIGURE 4 PRODUCTS LISTING AND VIEW ACTIVITY DIAGRAM.

FIGURE 3 THE STORE ACTIVITY DIAGRAM

FIGURE 5 THE TICKET SYSTEM ACTIVITY DIAGRAM.

FIGURE 6 SEARCH STORES AND PRODUCT-WISE.

FIGURE 7 FAVORITE LIST IMPLEMENTATION ACTIVITY
DIAGRAM.

FIGURE 9 ADD PRODUCTS TO THE SYSTEM BY STORE-OWNER ACTIVITY DIAGRAM.

FIGURE 8 ADMIN CONFIGURATION ACTIVITY DIAGRAM.

FIGURE 10 PRODUCT ANALYTICS ACTIVITY DIAGRAM

 System architecture, the most solid part of the system was designed to suit the scalability

needs. As the system was hosted on AWS to make use of the services the platform provides, the

old system architecture was a bottleneck to the system scalability and the usage of scalability

features of AWS, thus the new system architecture is shown in Figure 1.

This system architecture makes use of the scalability services provided by AWS such as

the load balancer, the RDS which is a relational database, and elastic computing scale the system

horizontally and vertically.

AWS provides several services that we used in Datashop. Starting with Route 53 (Linkeit-

Blog, 2019), it's a Domain Name System (DNS) service that gives the developers the ability to

3. SYSTEM ARCHITECTURE

FIGURE 11 THE NEW SYSTEM ARCHITECTURE FROM A HIGH VIEW

register their domain name and insert DNS records allowing fast propagation inside the cloud

infrastructure. The service was used to register the domain name for the project

(https://datashops.io) by creating DNS type A record that points to the load balancer IP Address.

A CNAME type record was also added for generating an SSL Certificate for securing the

connection between the user and the load balancer.

The Elastic Load Balancer (ELB) is a service provided by AWS (Yadav, What is Amazon

Elastic Load Balancer (ELB), 2019). It listens on specific ports allowing distributing the incoming

traffic on those ports across a target group of Elastic Computing (EC2) instances. The result is

balancing the computing and traffic load on those instances. This project is using ELB by setting

the configuration to listen on 2 ports, one is for https (port 443), where each incoming request to

https is forwarded to one instance in the target group of EC2 instances. The other port is for HTTP

(port 80) which is used to redirect all the insecure connections to https mentioned earlier. The https

listener is secured by an SSL certificate, the SSL certificate is generated using Amazon Certificate

Manager (ACM) registered to our domain, making all requests to the load balancer secured and

encrypted by default.

Elastic Computing (EC2) is a service that allows launching instances for computing

purposes. For this project, scaling those instances is crucial (Yadav, Understanding Amazon EC2

Terminology, 2019). A target group was set for the instances. The ELB will then point to this

target group. The target group is extended into an auto-scaling group, which is used to scale the

target group in or out, as in adding new instances with a specific launch configuration, depending

on a scaling policy.

The scaling policy in the current architecture is dependent on the average CPU usage of all

the instances. If it exceeds or goes below a certain limit for a constant period, the scaling policy

will be triggered adding or removing instances accordingly. The plan is to extend this scaling

policy to use Machine Learning to make predictions based on historical logged data for the website

users, launching new instances before the load occurs. The newly added instances are launched

with a launch configuration. The launch configuration is used to specify the following details for

the new instance:

• Amazon Machine Image (AMI)

• The instance type (Virtual CPU's, Instance Storage, Dynamic Memory, and network

connection)

• Execution Script

• Permissions to AWS services.

• Security groups

In this case, the AMI (Rouse, Amazon Machine Image (AMI) , 2014) is set to be Amazon

Linux distribution that comes with AWS CLI preinstalled and all other major libraries and binaries

up to date. The instance type is set to a ‘micro' instance, that has 2 Virtual CPUs, 1 GB of dynamic

memory and up to 5 gigabits of network connection. The execution script is executed whenever

the instance is launched, it is used to pull the project data from the S3 project bucket (marked as

green in figure 1), build the project and start serving incoming requests.

Simple Storage Service (S3) is a service that provides unlimited scalable storage (Rouse,

Amazon S3 , 2018). S3 provides the concept of buckets, which are logical units of storage as

volumes, used to store files or objects. Two buckets were created in this project, one is to serve

static files and assets for the Django application and the uploaded media by the users and the other

is to host the project data files to be pulled by the EC2 instances in the execution script as

mentioned above.

Relational Database Service (RDS) (SumoLogic-Team, 2019) is used to host the database

system. The selected database engine is PostgreSQL (postgreSQLTutorial, 2019). RDS provides

the means to create replicas of the database in multiple availability zones, to scale and to avoid

downtime. The database instance has 2 Virtual CPU's in it with 1 GB of RAM. The storage for the

database is set to 100 GB, expandable to 1 TB.

The internal architecture of the instances has also changed to adhere to the new external

architecture. MongoDB is now no longer used, as will be discussed in the design decisions section.

The user no longer can access the instances directly, as the load balancer now is exposed to the

web, while the internal instances are protected. Gunicorn (vsupalov, 2019) WSGI server is now

forking multiple worker processes to handle the work concurrently. Each worker process has a

running instance of the Django web application. Figure 2 shows the current architecture inside the

instances.

FIGURE 12 NEW INTERNAL ARCHITECTURE INSIDE EC2 INSTANCE

Overall, all these services are communicating with each other to serve requests, allowing

lower response times with separation of concerns in mind. Such architecture can scale up and down

in terms of computing power, database, and storage serving hundreds of requests per second with

no performance issues.

On the other hand, Figure 17 shows how the inner components of the system are interacting

and communicating together. The system discussed is mainly built on top of Django and uses

applications to achieve the maximum modularity. The system consists of four apps in addition to

the user app which classifies users into three categories. Each app is responsible for a certain set

of data and its corresponding functionality. The product app is considered with the actual data of

the product in addition to all the operations done on products like listing, adding, deleting, and so

on. The cart product is associated with the cart manipulation and it handles all the operations done

on the cart for the shoppers. The store app is used to create, list, and modify the stores associated

with the store owner's accounts. These five apps are all using data that can be retrieved from and

saved to the sql3lite database which uses the model’s manager interface provided by Django.

 As mentioned at the introduction of this section, the system has five main apps that each is

responsible for a set of data with the corresponding functionalities to manipulate the data.

4. SYSTEM DESIGN ARTIFACTS

FIGURE 13 THE SYSTEM COMPONENT DESIGN.

This section discusses the system design regarding algorithms used to implement the

required features and the design decisions with their effects on the total system design.

4.1. DESIGN DECISIONS

 Figure 19 shows the models' relations in the whole system. Five big boxes are considered

as applications, and each application has several models. The applications considered here are

product, cart, store, order, and users. Each one of these contains one or more models and each

model contains the related attributes to this model.

 In this section, the intra-relations will be briefly explained followed by the inter-relations
in the whole system.

i. Intra-relations:

Product:

• A category can contain many subcategories.
• A subcategory can contain many products.
• A product can contain many images.

Cart:

• A cart can be attached to many entries.

Store:

• A currency can be used in many stores.

Users:

• A country can contain many addresses.
• A custom user can have many addresses.
• A custom user can connect exactly one social media link.

ii. Inter-relations:

 Product-Cart:

• A product can be added to many entries.

 Product-Store:

• Many products can be added to one store.

 Cart-Order:

• A payment method can be used in many orders.
• An order can be added to many entries

Cart-User:

• One cart is assigned to one user.

Store-User:

• A custom user can view many stores.
• A currency can be used by many countries

Order-User:

• Many orders can be added to one address.
• A custom user can do many orders.

Further design decisions include many aspects of the system and may change how the

system behaves or acts in certain situations. To better classify design decisions, they will be based

application-wise starting with users.

In the users' application, a user can convert the type from seller to shopper and vice-versa,

enabling any shopper to have multiple stores, and any seller to have a cart and order product. The

conversion is done using a function in the website page and related functions are provided

depending on the current user type. This ability of conversion eliminated the need for an extra

user model to model the two distinct types of users, and a flag is used to distinguish user type and

provide corresponding functionality.

The cart implementation is based on entries that link each product with the user who put it

in a cart and the cart of the user. These entries are used to calculate the cart information and link

each user with the preferred products. Although this design approach provides flexibility and

efficiency in dealing with the carts, it provides overhead on the database storage where a lot of

rows will be inserted into a database for each cart in the system. The cart may contain multiple

products from different stores, and so when checking out, the cart will create multiple orders for

each store to maintain the state of each separately without mixing the concerns in one order.

The order application uses the same technique the cart application uses to link products with

users, but this time, an order is permanent in the system, thus order entries will generate huge data

set over time and may be hard to manage, a fix for this would be a crown job that can clean up the

database for very old entries and back them up in a secondary storage.

The order state should be always valid, so a Deterministic Finite Automaton (DFA) was

constructed to manage the order state (Figure 18)

FIGURE 14 DFA FOR THE ORDER STATE

 Each time the order state is changed, the validators will run an algorithm that simulates the

DFA, to guarantee that the state transition from the old state to the new state is legal and can be

done. If it’s not a legal transition, an error message will be displayed to the user.

 The search application takes a query string, which is then tokenized into a set of strings as

keywords. Each keyword will be matched against all the product and store names, descriptions

and categories. Such a design allows the user to look up the system easily.

The store application is now based on users, which offers the ability for a user to have

multiple stores associated with the users’ model. This design approach enables sellers to have

multiple stores that each has a distinct list of products associated with it. This approach provides

successful and is already manageable.

Finally, the product application uses the database as a main serving entity where all

operation is done on products can be visualized as query retrieve, query update, and query save.

The products' app also uses two distinct tables to link each product with its associated images to

provide more flexibility for sellers to add multiple images to their products while adds overhead

to retrieve the images of a certain product from the database.

FIGURE 15 DATASHOP MODELS’ RELATIONS

4.2. TECHNICAL DESCRIPTIONS

Some technical issues related to the system will be answered and the resolution will be
mentioned in this section.

4.2.1 TECHNICAL ISSUES

Technical Issue Resolution

How to handle DDOS attacks The system prohibits users from being able to
access a view a certain number of times during a
time frame (1 minute for example)

Technical Issue Resolution

How to assure that files uploaded by users are not
harmed and won't get executed in the system

By limiting the files uploaded types to be only
known types of images and nothing more

Technical Issue Resolution

How to efficiently log users’ behavior By logging the request users send to the system,
this way system can know exactly what they want
and where are they at the current moment.

Technical Issue Resolution

How to keep users’ information safe and private By encrypting users’ passwords and databases’
tables

Technical Issue Resolution

How to ensure that the added products to the
system don’t contain inappropriate content

By using an API that will be implemented in the
last sprint to check whether the uploaded images
of products and stores are appropriate or not.

4.2.2 SEARCH ALGORITHM

Search functionality of the system was not made to be like a simple query. This includes the

speed of the search, the type and quality of the results, and how the system dealt with the search

queries.

The system’s search is divided into two main categories, products search, and stores search.

This division ensures that the results are more specific to the user query and that a user can be

focused on what is he/she are searching for. When a user types a query in the search bar found on

the website navigation bar, the template sends the query to the search view that first validate the

query to not be empty, then the query gets into further modification.

 Using PostgreSQL database engine, the database offers the tools and the function to enable

full text search among the records inside the table. This functionality is achieved thanks to Vector

Space Model (VSM). Vector space model is an algebraic model that transforms text into vectors,

based on the lexemes generated in the tokenization process. The lexemes are based on a specific

language, DataShop uses English lexemes. After generating the vectors, they get indexed using a

special index named Generalized Inverted Index (GIN).

Combining VSM with GIN enables quick search, this is done by using the indexed vectors

that were generated from the target table fields. The target fields for store search are business

descriptions, category and store name, while the target fields for product search are both product

name and description.

 The search query from the user gets divided into keywords, and a VSM is created for each.

Then using GIN, the query VSMs will be matched against the existing data. Each result will be

annotated with a rank, the higher the rank, the more likely that the results are accurate against the

search keywords. This algorithm enables the user to quickly search for specific products or stores,

then getting the results sorted by descending rank.

4.3. USER INTERFACE

The user interface is flexible and can work on both mobile and desktop using responsive

CSS directives. In this section, each desktop variant of the UI will be compared to mobile UI.

4.3.1 HOME

FIGURE 16 HOME PAGE

FIGURE 17 MOBILE HOME PAGE

4.3.2 LOGIN

FIGURE 18 LOGIN

 FIGURE 19 MOBILE LOGIN

4.3.3 REGISTERATION

FIGURE 20 CREATE ACCOUNT

FIGURE 21 MOBILE CREATE ACCOUNT

4.3.4 CART

FIGURE 22 CART

FIGURE 23 MOBILE CART

4.3.5 CHECKOUT

FIGURE 24 CHECKOUT PROCESS

FIGURE 25 MOBILE CHECKOUT

4.3.6 PRODUCT DETAILS

FIGURE 26 PRODUCT DESCRIPTION

FIGURE 27 MOBILE PRODUCT DESCRIPTION

4.3.7 STORE

FIGURE 28 STORE DETAILS

FIGURE 29 MOBILE STORE DETAILS

4.3.8 SEARCH

FIGURE 30 SEARCH

FIGURE 31 MOBILE SEARCH

4.3.9 CATEGORIES MENU

FIGURE 32 CATEGORIES MENU

FIGURE 33 MOBILE CATEGORIES MENU

4.3.10 PROFILE

FIGURE 34 PROFILE PAGE

FIGURE 35 MOBILE PROFILE PAGE

4.3.11 ORDER HISTORY

FIGURE 36 ORDER HISTORY

FIGURE 37 MOBILE ORDER HISTORY

4.3.12 PRODUCT ADD

FIGURE 38 ADD PRODUCT

FIGURE 39 MOBILE ADD PRODUCT

4.3.13 STORE CREATION

FIGURE 40 STORE CREATION

FIGURE 41 MOBILE STORE CREATION

4.3.14 CHANGE STORE

FIGURE 42 SWITCH STORES

FIGURE 43 MOBILE SWITCH STORES

4.3.15 ORDER MANAGMENT

FIGURE 44 ORDERS MANAGEMENT

FIGURE 45 MOBILE ORDERS MANAGEMENT

4.3.16 FAVORITE LIST

FIGURE 46 FAVORITE LISTS

FIGURE 47 MOBILE FAVORITE LISTS

This chapter includes all the changes made since the start of the project until the last phase

and the final deliverable. The chapter is going to be divided into sections where each section holds

the changes made in one field like requirements, design, models, etc. It is important to note that

this chapter will only discuss the changes and will not get exposed to the whole plan to avoid

repetition and to put emphasis on what has been changed only and for what reason.

5.1 REQUIREMENTS

Many requirements have been either added or removed to the original backlog of the project

due to the wide range of the base requirements which either promoted new requirements or

inhibited old ones.

The requirements which were removed from the project are:

Requirement Handle the database as a separate component for each instance.

Requirement Use a separate storage for each instance.

Requirement Log the system requests using MongoDB.

Requirement A user can be either a shopper or a store owner, but not both.

Requirement A store owner can have only one store registered in the system.

Requirement Registration form included email, password and a store name.

Requirement Allow store owners to customize their store pages using a wizard.

Requirement Usage of MongoDB as the main database engine of the system.

Requirement Store owners can export their stores' design to be latter used.

Requirement Allow guest users to use the system and do shopping.

5. MODIFICATIONS OF THE ORIGINAL PLAN

Requirement Allow users to find stores by categories.

On the other hand, many requirements were added to the project which are presented as

follows:

Requirement Each user must have a profile.
Reason for
addition

To hold extra information required for the shopping.

Requirement Stores can be listed and browsed.
Reason for
addition

To give shoppers a general overview of what stores the system has and provide
easy access to the store pages

Requirement Password must be strong or at least has medium strength.
Reason for
addition

To provide an extra layer of security and making password cracking harder.

Requirement Products must be able to have multi images.
Reason for
addition

To provide a better view of the products.

Requirement Products must be categorized on a minimum of 2 levels.
Reason for
addition

To make the products browsing easier and more convenient.

Requirement Configure multi-currency support by the admin in the initialization of the system.
Reason for
addition

To make the system more stable and provide a fixed price for the products, because
the currency is always changing and unintentional loses and gains may occur.

Requirement Cart must auto calculate the prices of the products.
Reason for
addition

The products are going to have discount and shipment fields, which need extra
calculation functionality.

Requirement Each product must have its page that holds its information.

Reason for
addition

Products will have much valuable information such as user rating and store name,
these pieces of information cannot be listed in the products lists, thus a separate
view is added for each product on the system.

Requirement Only logged in shoppers can use the cart.
Reason for
addition

The cart logic is going to need more information about the user to calculate the
order status, thus only users with accounts can use the cart and proceed to checkout.

Requirement When an order is shipped, it is automatically saved in order history.
Reason for
addition

To make the order history specialized for shipped orders and make the user able to
distinguish between shipped and unshipped orders.

Requirement Shoppers can add/remove items to the cart.
Reason for
addition

To make the cart more convenient to use.

Requirement Use Bootstrap to make the UI simple and elegant.
Reason for
addition

Bootstrap provides a ready to use design classes to can help to formalize the system
design in a simple, yet elegant way.

Requirement Seller can register in the system using a special signup page.
Reason for
addition

Additional information is required for the seller account, and to distinguish between
normal shoppers and sellers accounts.

Requirement Each seller must have only one store registered in the system.
Reason for
addition

To avoid the complexities of communications between the store owners and
customers.

Requirement Storeowners can see analytics of their products.
Reason for
addition

To make the system smarter and more dynamic to use and to provide feedback to
the storeowners about their products.

Requirement Each shopper must have an address registered in the system before an order is
initiated.

Reason for
addition

To make the checkout process more automated and easier for the customers.

Requirement The system interface should be simple and constructive.

Reason for
addition

To make the system more likely-able to be used by different types of customers.

Requirement Create an EC2 instance and host the system’s website on it.
Reason for
addition

To make the system reachable online and useable by users and testers.

Requirement Host the system on Docker.
Reason for
addition

To make every module of the system well separated and can run no matter what the
underlying machine is.

Requirement Host Docker on the EC2 instance.
Reason for
addition

To make docker the main container that runes the system.

Requirement Log the system request by using MongoDB for further inspection of user
behavior.

Reason for
addition

To better monitor the system and use the user behavior for future behavior analysis.

Requirement Stores can be deactivated using profile.
Reason for
addition

To ease the usability of the system by store owners.

Requirement Empty search queries are not allowed in the system.
Reason for
addition

To make the system more convenient to use.

Requirement Make the UI mobile friendly.
Reason for
addition

Because the system has no mobile application, mobile users should be able to use
the system correctly.

Requirement Create a view for the store owner to view the sales of the store in a chart.
Reason for
addition

To make the system more usable by store owners.

Requirement Add a basic authorization module to your system such that every single view
calls the authorization.

Reason for
addition

To make the system more secure and prohibit unlogged in users to use a certain
function.

Requirement Restrict sellers to a fixed number of products added per hour. A user should
not be allowed to add 1000 products an hour.

Reason for
addition

To protect the system against denial of service attacks.

Requirement Implement registration access code that can be used to restrict the
registration of shop owners.

Reason for
addition

To regulate the registration process of sellers.

Requirement Populate the database with multiple stores and with each store populated
with multiple products.

Reason for
addition

To allow the system to be tested effectively.

Requirement Create a load balancer to distribute traffic among servers and to increase the
reliability of the system.

Reason for
addition

To allow the system to be fully scalable.

Requirement Use AWS RDS service to host the system database for more scalability.
Reason for
addition

To avoid the bottleneck of database access.

5.2 SYSTEM DESIGN

As can be seen in the System Design chapter of the report, the system design has changed to

allow the scalability to take more place into the system architecture itself. The new system design

relies on using the EC2 service of AWS to host the system files and code, while S3 is used as the

system storage to store static files of the system, and finally the usage of RDS to hold the database

of the system. Amazon’s load balancer was used to receive the users’ requests and perform load

balancing to distribute the requests on the available machines. Finally, Route 53 was used to create

and manage the DNS records.

 This section will contain details about the frameworks and platforms that been used during

the construction of the system. Besides, the coding decisions the team has made and the CASE

tools that have been used during implementation.

6.1. FRAMEWORKS AND PLATFORMS

The project is aimed to be used in web browsers, targeted at mobile and desktop platforms.

This was achieved by implementing responsive CSS stylings allowing different looks to make the

system usable for both parties.

Django framework is used to construct the components related to the system. Django is a

Python-based framework that follows the MVT (Model – View – Template) architectural pattern

as shown in Figure 4.

FIGURE 48 MODEL VIEW TEMPLATE PATTERN

The request starts its life cycle inside the framework by going through the view, where

model fetching and business logic will be applied. After applying the logic, the view will return

the HTML response that is rendered by the template rendering engine provided by Django.

6. IMPLEMENTATION FRAMEWORK AND DETAILS

6.2. COMPONENT AND CODE REUSE

 Django formulates the concept of apps as a way to describe different components,

providing separation of concerns. Some apps were implemented by the team members while others

were library-like apps that had to be configured properly for usage, described in detail as follows:

• Team made components

Component Datashop
Responsible functions - Display the home page

Component Order
Responsible functions - Show order history

- Show order details
- Delete orders
- Display the home page

Component Cart
Responsible functions - Cart Checkout.

- Show cart contents.

Component Product
Responsible functions - Creating new products.

- Show product details.
- Update product details.
- Delete product.
- Adding product to cart.
- Removing the product from the cart.
- Show products in a specific category.
- Product and store search.

Component User Profile
Responsible functions - Show user profile.

- Update the user password.
- Update the user store.
- Add a delivery address.
- Remove delivery address.

Component Store
Responsible functions - Show store details.

- Creating new stores.
- Changing between old and new

stores.
- Deleting stores.

Component Users
Responsible functions - User login.

- User signup.
- Switching between store owner and

shopper.

• Library components

Component Django Storages
Used functions - Providing a custom storage backend

to access AWS S3 directly from the
app.

Component Django Extensions
Used functions - Generating model graph for the

database.

Component AWS Boto3
Used functions - Call AWS API endpoints to access

the resources of the project

Component Psycopg2
Used functions - PostgreSQL backend to communicate

with the database.

Component Python Image Library
Used functions - Provide a means to open, manipulate

and store images.

Component Django Rate Limit
Used functions - Limit users from accessing specific

views more than X times in a limited
period

6.3. CASE TOOLS

A set of CASE tools were used to aid the construction and engineering of the project

including design and testing tools. These tools were all used since the start of the project and the

team continued using them until this moment.

Sparx Enterprise Architect: This tool was used to create diagrams of the system design

and architecture. It offers a huge set of tools that enable the user to create all types of diagrams

and convert them into code when done. The team has mainly used this tool for diagraming

purposes.

Lucid Charts: Lucid Charts is also a diagramming tool that is hosted on the cloud and has

many features that aids to create fancy and elegant UML diagrams.

Git: Git and GitHub were used to share the project files between the team members and

host the project files online for easy access and migration for AWS EC2 instance.

VSCode: This is the main IDE the team used to construct the project. It is integrated with

GitHub and provides insight into the code reviews and code snippets. This tool is also integrated

with SSH which provided easy access to the server and AWS services, and many more features

that made the team depend on it only without the need to use any tool out of it.

Adobe Photoshop: Which was used to design the system’s logo.

7. TESTING

Tests for the project were written to guarantee software reliability and to mitigate problems

and bugs during future development. Different types of tests were conducted to assure software

quality from different perspectives. The following sections will discuss different types of tests such

as unit, integration and stress tests.

7.1. TESTING PLAN

Testing as a procedure takes a lot of time and effort and must be planned properly to avoid

any waste of resources and cover as many cases as possible. Taking that into consideration, testing

must be planned in a way that avoids redoing any type of test and covering all possible test cases

to assure the system’s reliability and ability to holds still when such cases occur.

Tests were divided by type as unit tests, integration tests, and stress tests, and each test type

was conducted and created separately of the other types to avoid misconception and misleading

test cases. The testing plan started by first doing system-wide tests that indicate the whole system’s

behavior under certain conditions as the system was treated as a solid and unbreakable part and

tested accordingly. These tests were all under the stress tests umbrella and were conducted at the

start of the testing phase. Then, tests regarding the user’s interaction with the system were done to

observe how the system will behave given a certain input from the user.

These tests dived a little deeper into the system details and started treating the system as

separate functions or components that the user could interact with, and the tests were all under the

integration tests umbrella. Finally, the tests that regard the small system’s details were conducted

to ensure each function/piece of the system was working as expected. These tests fall under the

unit tests umbrella where the system is treated as small units that each unit can be tested separately

from the others.

7.2. UNIT TEST CASES

Unit testing is a software level test that focuses on each working function of the code and

tests its behavior in certain conditions. While the unit is the smallest testable part of a system, it

can do a certain job and perform a certain task where the test is assigned to check for its

success/failure when given a valid/invalid input.

The system was exposed to 151 different unit tests, and each was for a special case regarding

a function in the system. The unit tests were conducted for the models of the applications inside

Django to ensure that when models change they don’t affect the views that use these models, for

the forms to ensure that forms are behaving as expected and they only accept valid input from the

user, and finally for the view to ensure each view is giving the right input when given a certain

output. The views of the system were the most complex part of the system to test because each

view has many test cases as will be shown in the test table. The following table presents each

test’s number, name, expected result, and test result as conducted from Django. The table will

walk on the apps’ tests one by one including all the three types of units.

TABLE 1 UNIT TEST RESULTS TABLE

Test
Number

Test Name Expected Result Test Result

Test#1 Cart checkout by anonymous users The view redirects the
anonymous user to the login
page

pass

Test#2 Cart checkout by logged in shopper
users

The view works as expected
and redirects the shopper to the
checkout page

Pass

Test#3 Cart checkout by logged in store owners The view redirects the user to the
home page

Pass

Test#4 Get cart contents by anonymous users The view redirects the users to log
in page

Pass

Test#5 Get cart contents by actual shoppers The view renders all the cart
contents of the shopper

Pass

Test#6 Get cart contents by store owners The view redirects the user to the
home page

Pass

Test#7 Test the shopper field in the cart model The field usage and appearance are
consistent

pass

Test#8 Test the count field in the cart model The field usage and appearance are
consistent

Pass

Test#9 Test the price field in the cart model The field usage and appearance are
consistent

Pass

Test#10 Test the updated field in the cart models The field usage and appearance are
consistent

Pass

Test#11 Test the timestamp field in the cart model The field usage and appearance are
consistent

Pass

Test#12 Test the string representation of the cart
model

The field usage and appearance are
consistent

Pass

Test#13 Test the product field in the entry model The field usage and appearance are
consistent

Pass

Test#14 Test the cart field in the entry model The field usage and appearance are
consistent

Pass

Test#15 Test the quantity field in the entry model The field usage and appearance are
consistent

Pass

Test#16 Test the string representation of the entry
model

The field usage and appearance are
consistent

Pass

Test#17 Test the name field in the payment method
model

The field usage and appearance are
consistent

Pass

Test#18 Test the string representation of the
payment method model

The field usage and appearance are
consistent

Pass

Test#19 Test the home page view of the website The view should work without the
need to sign in and it uses the
correct template

Pass

Test#20 Test the home page product pagination The products are paginated by 10 Pass
Test#21 Test home page product number at the last

page of pagination
The last page of products most
contain (total number of products
% 10)

Pass

Test#22 Add product to shopper favorite list by
anonymous user

the view must redirect the user to
login page

Pass

Test#23 Add product to shopper favorite list by
store owner

The store owner must be redirected
to the home page

Pass

Test#24 Add inexistent product to the shopper
favorite list

The product shall not be added and
the view must redirect user to the
product page

Failed, the view
gets into an
infinite loop
trying to add an
inexistent
product.
fixed

Test#25 Add product to the shopper favorite list The product is added to the list and
the shopper is redirected again to
the product detail page

Pass

Test#26 Add store to the shopper favorite list by
anonymous user

The user is redirected to the login
page

Pass

Test#27 Add store to the shopper favorite list by a
store owner

The store owner gets redirected to
the home page

Pass

Test#28 Add an inexistent store to the shopper
favorite list

the store is not added and the
shopper is redirected to the store
page

Failed, got into
an infinite loop
trying to add the
store to the
favorite list.
fixed

Test#29 Add store to favorite list by the shopper The store gets added to the list and
shopper is redirected back to the
store page

Pass

Test#30 View the favorite list of the shopper by
anonymous user

The user must be redirected to the
login page

Pass

Test#31 View the shopper favorite list by a store
owner

The store owner must be redirected
to the home page

Pass

Test#32 View the shopper favorite list by the
actual shopper

The favorite list is rendered to the
shopper

Pass

Test#33 Remove a product from the favorite list by
an anonymous user

The user must be redirected to the
login page

Pass

Test#34 Remove a product from the favorite list by
a store owner

The store owner must be redirected
to the home page

Pass

Test#35 Remove inexistent product from the list
by the shopper

The view redirects the user to the
list page without doing anything

Pass

Test#36 Remove existent product from the list by a
shopper

The product gets removed from the
list and the shopper is redirected to
the list page again

Pass

Test#37 Remove a store from the favorite list page
by an anonymous user

The user gets redirected to the
login page

Pass

Test#38 Remove a store from the list by a store
owner

The store owner gets redirected to
the home page

Pass

Test#39 Remove an inexistent store from the list
by the user

The view removes nothing from
the list and the user gets redirected
to the list page

Pass

Test#40 Remove a store from the list by the
shopper

The store is removed from the list
and shopper is redirected to the list
view again

Pass

Test#41 Test the user field in the favorite product
model

The field usage and appearance are
consistent

Pass

Test#42 Test the product field in the favorite
product model

The field usage and appearance are
consistent

Pass

Test#43 Test the user field in the favorite store
model

The field usage and appearance are
consistent

Pass

Test#44 Test the store field in the favorite store
model

The field usage and appearance are
consistent

Pass

Test#45 Create a product as anonymous user The user should be redirected to
the login page

Pass

Test#46 Create a product as a logged in shopper
with get method

The shopper must be redirected to
the home page

Pass

Test#47 Create a product as a logged in shopper
with post method

The shopper must be redirected to
the home page

Pass

Test#48 Create a product as a logged in seller with
get method

The seller is redirected to the
product creation page

Pass

Test#49 Create a product as a seller with empty
data with post method

The seller is redirected to the
product creation page and the
product is not created

Pass

Test#50 Create a product as a seller with data and
post method

The product is created Pass

Test#51 View the products details as anonymous
user

The user can see the product details Pass

Test#52 View the product details as a shopper The shopper can see the product
details page

Pass

Test#53 View the product details as a seller The seller can see the product
details page

Pass

Test#54 Update a product as anonymous user with
get method

The user is redirected to the log in
page

Pass

Test#55 Update the product as anonymous user
with post method

The user is redirected to the login
page

Pass

Test#56 Update the product with shopper and get
method

The shopper is redirected to the
home page

Pass

Test#57 Update the product with a shopper and
post method

The shopper is redirected to the
home page

Pass

Test#58 update the product as a seller with get
method

the seller is redirected to the
product update page

Pass

Test#59 Update the product as a seller with post
and no data

The seller is redirected to the
product creation page and the
product is not created

Pass

Test#60 Update the product as a seller with post
method and correct data

The product is updated
successfully

Pass

Test#61 Delete a product by anonymous user and
get method

The product is not deleted Pass

Test#62 Delete a product as anonymous user with
post method

The product is not deleted Pass

Test#63 Delete a product as a shopper with get
method

The product is not deleted Pass

Test#64 Delete a product as a shopper with post
method

The product is not deleted Pass

Test#65 Delete a product as a seller with get
method

The product is not deleted Pass

Test#66 Delete a product as a seller with post
method

The product is deleted Pass

Test#67 Add a product to cart by an anonymous
user

The product is not added and the
user is redirected to the login page

Pass

Test#68 Add a product to the cart by a logged in
shopper

The product is added to the
shopper’s cart

Pass

Test#69 Add an inexistent product to the cart by a
shopper

The product is not added and the
shopper is redirected to the error
page

Failed, the cart
tried to add the
invalid product
anyway.
fixed

Test#70 Add a product to the cart by the shopper
with 0 quantity

The product is not added to cart Pass

Test#71 Add a product to the cart by a seller The product is not added to the cart
and the seller is redirected to the
home page

Pass

Test#72 Remove a product from the cart by
anonymous user

The product is not removed and the
user is redirected to the login page

Pass

Test#73 Remove a product from the cart by a
logged in shopper

The product is removed from the
shopper’s cart

Pass

Test#74 Remove an inexistent product from the
shopper cart

The product is not removed Failed, the cart
tried to remove
the product
anyway.
#fixed

Test#75 Remove a product from the cart by a seller The product is not removed and the
seller is redirected to the home
page

Pass

Test#76 View a subcategory with its products by
anonymous user

 The user sees the products in that
subcategory

Pass

Test#77 View a subcategory with its products by
shopper user

 The user sees the products in that
subcategory

Pass

Test#78 View an inexistent subcategory with its
products by shopper user

The shopper is redirected to the
home page

Pass

Test#79 View a subcategory with its products by
seller user

 The user sees the products in that
subcategory

Pass

Test#80 Create a product using the product
creation form with valid data

The product is created and saved in
the database

Pass

Test#81 Create a product using the product
creation form with invalid data

The product is not created Pass

Test#82 Test the name field of the product model The field usage and appearance are
consistent

Pass

Test#83 Test the subcategory field of the product
model

The field usage and appearance are
consistent

Pass

Test#84 Test the store field of the product model The field usage and appearance are
consistent

Pass

Test#85 Test the price field of the product model The field usage and appearance are
consistent

Pass

Test#86 Test the description field of the product
model

The field usage and appearance are
consistent

Pass

Test#87 Test the quantity field of the product
model

The field usage and appearance are
consistent

Pass

Test#88 Test the string representation of the
product model

The string usage and appearance
are consistent

Pass

Test#89 View the store page as an anonymous user The user should be able to see the
store page

Pass

Test#90 View the store page as a shopper The shopper is allowed to see the
store page

Pass

Test#91 View the store page as a seller The seller is allowed to see the
store page

Pass

Test#92 Change the current store as an anonymous
user

The user should be redirected to
the login page

Pass

Test#93 Change the store as a shopper The shopper should be redirected
to the home page

Pass

Test#94 Change the store as a seller The seller should see the change
store page with its functions

Pass

Test#95 Create a new store as an anonymous user The user is redirected to the login
page

Pass

Test#96 Create a new store as shopper with post
method and no data

The shopper must be redirected to
the home page

Pass

Test#97 Create a new store as a shopper with post
method and valid data

The shopper must be redirected to
the home page

Pass

Test#98 Create a store as a seller with invalid data
and post method

The store is not created and the
seller is redirected to the store
creation page

Pass

Test#99 Create a store as a seller with valid data The store is created and the seller is
redirected to the store page

Pass

Test#100 Change the current store as an anonymous
user

The user is redirected to the login
page

Pass

Test#101 Change the current store as a shopper user The user is redirected to the home
page

Pass

Test#102 Change the store as a seller The current store is changed Pass
Test#103 Create a new store using the store form

itself
A new store should be created and
saved in the database

Pass

Test#104 Create a store with the store form as
anonymous user

The store is not created and the
user is redirected to the login page

Pass

Test#105 Create a store with anonymous user with
post method and no data

The store is not created and the
user is redirected to the home page

Pass

Test#106 Create a store with as a shopper with post
method and no data

The shopper is redirected to the
home page

Pass

Test#107 Create a store as a shopper with post
method and valid data

The shopper is redirected to the
home page

Pass

Test#108 Create a store as a seller with post method
and no data

The store is not created Pass

Test#109 Create a store as a seller with post method
and valid data

The store is created and saved to
the database

Pass

Test#110 Create social media object using the form
with valid data

The object is created and saved in
the database

Pass

Test#111 Create social media object using the form
with invalid data

The object is not created Pass

Test#112 Test the store name field in the store
model

The field usage and appearance are
consistent

Pass

Test#113 Test the string representation field in the
store model

The field usage and appearance are
consistent

Pass

Test#114 Test the currency field in the store model The field usage and appearance are
consistent

Pass

Test#115 Test the business description field in the
store model

The field usage and appearance are
consistent

Pass

Test#116 Test the business category field in the
store model

The field usage and appearance are
consistent

Pass

Test#117 Test the is new business field in the store
model

The field usage and appearance are
consistent

Pass

Test#118 Test the has physical store field in the
store model

The field usage and appearance are
consistent

Pass

Test#119 Test the logo field in the store model The field usage and appearance are
consistent

Pass

Test#120 Test the name field in the currency model The field usage and appearance are
consistent

Pass

Test#121 Test the country field in the currency
model

The field usage and appearance are
consistent

Pass

Test#122 Test the Instagram field in the social
media links model

The field usage and appearance are
consistent

Pass

Test#123 Test the Twitter field in the social media
links model

The field usage and appearance are
consistent

Pass

Test#124 Test the Snapchat field in the social media
links model

The field usage and appearance are
consistent

Pass

Test#125 Test the Facebook field in the social
media links model

The field usage and appearance are
consistent

Pass

Test#126 Test the LinkedIn field in the social media
links model

The field usage and appearance are
consistent

Pass

Test#127 Test the YouTube field in the social media
links model

The field usage and appearance are
consistent

Pass

Test#128 Test the phone number field in the social
media links model

The field usage and appearance are
consistent

Pass

Test#129 Test the general login in the system The user should be logged in and
redirected to the home page

Pass

Test#130 Sign up as a shopper in the system with
anonymous user and get method

The user is redirected to the login
page

Pass

Test#131 Sign up as a shopper with anonymous user
and post method with no data

The user is redirected to the sign up
page

Pass

Test#132 Sign up as a shopper with anonymous user
and post method with valid data

The user is signed up, logged in,
and redirected to the home page

Pass

Test#133 Sign up as a shopper with already logged
in user

The user is redirected to the home
page

Pass

Test#134 Sign up as a user in the system with
anonymous user and get method

The user is redirected to the login
page

Pass

Test#135 Sign up as a seller with anonymous user
and post method with no data

The user is redirected to the signup
page

Pass

Test#136 Sign up as a seller with anonymous user
and post method with valid data

The user is signed up, logged in,
and redirected to the home page

Pass

Test#137 Sign up as a seller with already logged in
user

The user is redirected to the home
page

Pass

Test#138 Convert shopper to seller as anonymous The user is redirected to the login
page

Pass

Test#139 Convert shopper to seller as seller The seller is redirected to the home
page

Pass

Test#140 Convert shopper to seller as shopper with
no store

The shopper is converted to seller
and redirected to the store creation
page

Pass

Test#141 Convert shopper to seller as shopper with
store

The shopper is converted to seller Pass

Test#142 Convert seller to shopper as anonymous
user

The user is redirected to the login
page

Pass

Test#143 Convert seller to shopper seller The seller is redirected to the home
page

Pass

Test#144 Convert seller to shopper as seller The seller is converted to shopper Pass
Test#145 Test the shopper creation form with valid

data
A new shopper user in created in
the system

Pass

Test#146 Test the shopper creation form with
invalid data

Nothing is created Pass

Test#147 Test the seller creation form with valid
data

A new seller user in created in the
system

Pass

Test#148 Test the seller creation form with invalid
data

Nothing is created Pass

Test#149 Create an address as anonymous user The user is redirected to the login
page

Pass

Test#150 Test the address form with valid data as
shopper

A new address is created and saved
in the system

Pass

Test#151 Test the address form with invalid data as
shopper

Nothing is created Pass

Having listed all the unit tests, their number may be satisfying, but do they cover the most

important parts of the system? By using Coverage, a Python tool that measures the effectivity of

the unit tests and how much code they cover. This tool provides a detailed report about each code

file in the system and shows the lines that were covered/not covered in the unit tests. The tool also

shows a general report about how many code lines are covered and the total percentage of the unit

tests coverage of the code. It is important to mention that the report includes files that are not

testable like scripts and algorithms, thus the total percentage is higher than what is shown in the

tool report. Figure 49 shows the general report generated by the tool. The test report is included

in the project files and can be seen in detail for further inspection. The total amount of code covered

with the project’s unit tests is 88% while the real number may be higher as mentioned that some

code files that cannot be tested such as scripts were included in the report of the tool.

FIGURE 49 UNIT TEST COVERAGE.

In addition to the Coverage tool report, the total percentage of failed test compared to success

tests is 2.6% where only 4 tests failed out of 151 total unit tests.

7.3. INTEGRATION TESTS

Integration tests are conducted to check whether different modules are interacting correctly

or not. In the following test cases, each view in the system will be rendered in the browser to check

for template issues, CSS and JavaScript code will be evaluated based on the interaction and the

purpose of the page. In other words, integration tests will combine the view, HTML template, CSS

and JavaScript to validate that the page completes its purpose on all cases.

The tests will be run using selenium web driver to simulate user’s interaction in the page.

The following table will include the test case and the expected behavior and the result of each.
TABLE 2 INTEGRATION TESTS RESULTS TABLE.

Test Case Expected Results Test Results

1 Home Page Home page renders with list of products and

pagination

Failed, the products from deactivated

stores were showing

1.1 Home Page Home page renders with list of products and

pagination

Pass

2 Header All buttons in the header are rendered,

clickable, search box is activated, categories list

is showing

Pass

3 Error page Error page displays errors in case of redirection. Pass

4 Search box Search should show results for both store and

products search, if any.

Pass

5 Get favorite list The favorite lists for both stores and products

should render the elements, if any.

Pass

6 Remove

favorite list

User should be able to remove elements from

both lists

Failed, confirmation message did not

work as expected.

6.1 Remove

favorite list

User should be able to remove elements from

both lists

Passed

7 Insert favorite

list

User should be able to add elements in both

lists

Failed, duplicate values are allowed

7.1 Insert favorite

list

User should be able to add elements in both

lists

Passed

8 User Profile The profile should render as expected with

working javascript to switch between the

profile tabs in both store owner and shopper

views

Passed

9 Product Details Product details are rendered, with appropriate

actions for each type of user. The store owner

can delete and modify the product, shopper can

add to favorite list and to cart

Failed, having multiple stores gives

update button without having the

store as active, resulting in system

error.

9.1 Product Details Product details are rendered, with appropriate

actions for each type of user. The store owner

can delete and modify the product, shopper can

add to favorite list and to cart

Passed

10 Product Update Product details should be updated from the

form

Passed

11 Product Create Product created should appear in the store and

details with the correct form data

Passed

12 Category Products from a specific category should show

with their pagination

Pass

13 Creating Users Users should be created (both shopper and store

owner)

Failed, no error message is shown

under wrong data.

13.1 Creating Users Users should be created (both shopper and store

owner)

Failed, creating the user is working

but the info message about the

redirection is not being shown

13.2 Creating Users Users should be created (both shopper and store

owner)

Pass

14 Login Users should be able to login with appropriate

credentials

Error, no error message is shown

under wrong data.

14.1 Login Users should be able to login with appropriate

credentials

Pass

15 Logout User should be able to sign out from the system Pass

16 User Profile

Change

password

User profile forms should all give expected

results with user interaction

Failed, password did not change

16.1 User profile

Change

password

User profile forms should all give expected

results with user interaction

Pass

17 User profile

address

Shopper should be able to remove/add an

address with valid values

Pass

18 User profile

social media

Store owner should be able to add social media

links

Failed, non URL input gives HTTP

500 error

18.1 User profile

social media

Store owner should be able to add social media

links

Pass

19 Store Details Store should have all its data rendered correctly Failed, logging middleware caused a

crash

20 Store Details Store should have all its data rendered correctly Passed

21 Store creation New stores should be created from the form

with the valid user input

Failed, invalid checkbox that is

meant to be an internal attribute is

exposed in the template

21.1 Store creation New stores should be created from the form

with the valid user input

Passed

22 Store owner

stores

The page should render correctly with all the

stores visible to the user, plus their current

status

Pass

23 Logging The website should send an axios http request

to send the location, if the user accepts the

permissions

Pass

7.4. STRESS AND PERFORMANCE TESTS

A stress test was done using a script written in Python that creates bulk asynchronous HTTP

requests using an event loop and then reads the response from the server. A special machine with

a network connection of 20 Gbps is used to run the script. Several tests were conducted to measure

how the system behaves under certain circumstances and the results were extracted for each test.

It turned out the system was able to scale up and down depending on the load on the machines’

CPUs and the network traffic. Moreover, each test took almost 30 minutes to complete, and each

test was conducted on a different type of EC2 instances.

The first 4 tests show how the system behaves under stress with an undiscovered

performance bug. The last test will show the final results with a discussion regarding the said bug

and how it was fixed.

Each test will start with one running instance and one launch configuration mentioned in

each test section title, scaling horizontally from 1 to 5 running instances. The change in

configuration will show the performance gain under vertical scaling. Test summary can be found

under each subsection followed by raw data table and diagrams to show the relation between the

test parameters as throughput (requests per second), number of instances, the response time (ms)

and database CPU utilization

As a general note on the set of tests, increasing the instance power decreases the response

time to user requests. Scaling up the system by initiating more instances allowed the system to

handle more requests per second (RPM) because the new instances can handle more work in a

minute. The last test will show how a database related bug was fixed which was causing database

bottleneck, limiting the response time due to the high utilization of the database resources.

7.4.1 T3.MICRO (2 CPU) EC2, T3.MICRO DB (2 CPU)

These test results show that the response time of the system is poor when a single instance

is running, due to the resources shortage of the instance type, however, the response time gets

lower when the number of instances increases until it reaches the lowest recorded response time

when 5 instances are up.

It’s clear from figure 16 that the response time decreased as the number of instances

increases. In figure 17, the number of instances (red line) is directly proportional to the throughput

(blue line) which is the number of requests per minute, up until midway of testing, the result is

unexpected but it was due to a bug that affected the performance of the system that has been fixed

and the results can be found in the last test. Figure 18 illustrates the relationship between the

throughput and the database CPU utilization.

TABLE 3 T3.MICRO (2CPU) RAW TEST DATA

Throughput
(RPM) Current Number of Instances Response time (ms) Time DB CPU

690 1 9149 10:29 8%
420 1 9762 10:30 15%
616 1 9428 10:31 15%
612 1 9208 10:32 15%
409 1 10004 10:33 15%
610 1 10974 10:34 10%
789 2 8179 10:37 4%

1081 2 5593 10:38 17%
1208 2 4788 10:39 27%
658 2 8934 10:40 25.00%

1113 2 5143 10:41 20.00%
1115 2 5371 10:42 24.00%
1215 2 4826 10:43 28.00%
1202 2 3525 10:44 27.00%
1220 2 4753 10:45 28%
1800 3 4860 10:46 27%
1762 3 4252 10:47 28%
1811 3 3283 10:48 36%
2362 3 3266 10:49 41%
1238 4 4712 10:50 36.00%
1223 4 4786 10:51 28.00%
1604 4 4125 10:52 33.00%
713 5 8171 10:53 23.00%
977 5 6251 10:54 17.00%

1794 5 3259 10:55 32.00%
2668 5 2496 10:56 46.00%
2411 5 2431 10:57 57.00%
2254 5 2583 10:58 55.00%
2403 5 2725 10:59 51.00%
2243 5 2537 11:00 54.00%
2416 5 2461 11:01 56.00%
2422 5 2415 11:02 56.00%
2748 5 2329 11:03 55.00%
2992 5 1963 11:04 68.00%
2979 5 1961 11:05 69.00%

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35 40

Throughput (RPM) Response time (ms)

0

1

2

3

4

5

6

0

2000

4000

6000

8000

10000

12000

Response time (ms) Current Number of Instances

FIGURE 51 THE RELATIONSHIP BETWEEN THE RESPONSE TIME AND THE
NUMBER OF INSTANCES.

FIGURE 50 THE RELATIONSHIP BETWEEN THE THROUPUT AND RESPONSE
TIME.

0

1

2

3

4

5

6

0

500

1000

1500

2000

2500

3000

3500

Throughput (RPM) Current Number of Instances

FIGURE 52 THE RELATIONSHIP BETWEEN THE THROUPUT AND THE NUMBER
OF INSTANCES.

0%

10%

20%

30%

40%

50%

60%

70%

80%

0

500

1000

1500

2000

2500

3000

3500

Throughput (RPM) DB CPU

FIGURE 53 THE RELATIONSHIP BETWEEN THE THROUGHPUT AND THE
DATABASE CPU USAGE.

7.4.2 M5.XLARGE (4 CPU) EC2, T3.MICRO DB (2 CPU)

In this test, the instance configuration has changed to include 4 CPU cores and 8 GB of

DRAM for each instance. Table 2 shows the raw test data.

Figure 19 shows the relationship between the throughput and the number of launched

instances, where the number of launched instances now can handle more throughput than the

previous instance type. Figure. 20 clearly shows the response time decreases with time while the

throughput almost remains the same because overtime more instances get launched until the

system reaches a steady-state. Figure. 21, on the other hand, shows the timeline of the throughput

and the database CPU utilization which increases over time due to the fact that the database is a

bottleneck in the system which shall be resolved in later tests.

TABLE 4: M5.XLARGE (4CPU) EC2, T3.MICRO DB(2CPU) RAW DATA

Throughput
(RPM)

Current Number of
Instances Response time (ms) Time DB CPU

1223 1 4611 11:40 12.00%
1228 1 4632 11:41 27.00%
1219 1 4701 11:42 28.00%
1227 1 4665 11:43 28.00%
1227 1 4649 11:44 28.00%
1221 1 4611 11:45 28.00%
1926 2 4737 11:46 28.00%
2016 2 3656 11:47 28.00%
2020 2 2703 11:48 42.00%
2003 2 2869 11:49 46.00%
1621 3 3484 11:50 42.00%
1632 3 3528 11:51 37.00%
2398 3 2403 11:52 44.00%
1900 3 3027 11:53 54.00%
2418 3 2359 11:54 44.00%
2662 3 2122 11:55 55.00%
3176 3 1785 11:56 70.20%
3191 3 1774 11:57 67.00%
3528 3 1604 11:58 73.00%
3541 3 1589 11:59 80.00%
3300 3 1732 12:00 78.00%
3477 3 1625 12:01 80.00%
3242 3 1625 12:02 80.00%
3335 3 2678 12:03 70.00%
3550 3 3163 12:04 81.00%
3729 5 2903 12:05 80.00%
3801 5 2976 12:06 90.00%
3670 5 3108 12:07 89.00%
3880 5 2931 12:08 82.00%
4209 5 2614 12:09 95.00%
4269 5 2716 12:10 98.00%
4227 5 2746 12:11 99.00%
4215 5 2697 12:12 96.00%
4262 5 2597 12:13 96.00%
4274 5 2441 12:14 98%

0

1

2

3

4

5

6

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30 35 40

Chart Title

Throughput (RPM) Current Number of Instances

FIGURE 54 THE RELATIONSHIP BETWEEN THROUGHPUT AND NUMBER OF
INSTANCES.

0

1000

2000

3000

4000

5000

6000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30 35 40

Chart Title

Throughput (RPM) Response time (ms)

FIGURE 55 THE RELATIONSHIP BETWEEN THE THROUGHPUT AND THE
RESPONSE TIME

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30 35 40

Throughput (RPM) DB CPU

FIGURE 56 THE RELATIONSHIP BETWEEN THE THROUGHPUT AND THE
DABASE CPU UTILIZATION.

0

1

2

3

4

5

6

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

In
st

an
ce

s

Axis Title

Re
sp

on
se

 ti
m

e

Response time (ms) Current Number of Instances

FIGURE 57 THE RELATIONSHIP BETWEEN NUMBER OF INSTANCES AND
RESPONSE TIME

7.4.3 M5.4XLARGE (16 CPU) EC2, T3.2XLARGE DB (8 CPU)

This set of tests is done on an even more powerful EC2 instance and RDS instance, the

general response time gave the throughput and the number of instances has generally decreased

but the database access still introduces a bottleneck.

The response time and throughput start from 2155ms, 4705 rpm respectively when one

instance is running. Under full load the system scales out to 5 instances giving response time and

throughput equal to 314ms, 19101 rpm respectively.

Figure. 22 shows the relation between the throughput and the number of instances in a

manner that shows the ability of the system to scale up when the throughput increases. It can be

clearly seen that the system is doing well scaling up with the increase of the throughput.

Figure.23 shows great results of how the response time decreases when the throughput

increases due to the fact that the current number of instances increases over time.

Figure. 24 graphs the relation between the throughput and the database CPU utilization, the

database is still a bottleneck and the problem is not solved yet.

TABLE 5:M5.4XLARGE (16 CPU) EC2, T3.2XLARGE DB (8 CPU) RAW TEST DATA

Throughput
(RPM)

Current Number of
Instances

Response time
(ms) Time DB CPU

1075 1 2155 1:03 12%
4705 1 2542 1:04 22%
4698 1 2425 1:05 22%
4700 1 2393 1:06 22%
4697 1 2428 1:07 22%
4699 1 2426 1:08 22%
4692 1 2410 1:09 22%
4709 1 2457 1:10 22%
6736 2 2430 1:11 22%
6214 2 2138 1:12 22%
6239 2 1819 1:13 28%
6914 2 1662 1:14 29%
8462 3 1366 1:15 35%
9391 3 1227 1:16 44%
9372 3 1234 1:17 45%

10649 3 1825 1:18 45%
13977 4 934 1:19 61%
13982 4 827 1:20 72%
13980 4 824 1:21 72%
13981 4 825 1:22 72%
16973 5 964 1:23 72%
18181 5 950 1:24 95%
18177 5 1130 1:25 96%
18786 5 1044 1:26 99%
19035 5 780 1:27 99%
19069 5 892 1:28 99%
19114 5 891 1:29 99%
19049 5 898 1:30 99%
19072 5 666 1:31 99%
19051 5 498 1:32 99%
19101 5 314 1:33 99%

FIGURE 59: THE RELATIONSHIP BETWEEN THROUGHPUT AND RESPONSE TIME.

0

1

2

3

4

5

6

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35

Throughput (RPM) Current Number of Instances

0

500

1000

1500

2000

2500

3000

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35

Throughput (RPM) Response time (ms)

FIGURE 58 THE RELATIONSHIP BETWEEN THE THROUGHPUT AND THE
CURRENT NUMBER OF INSTANCES.

FIGURE 61 THE RELATIONSHIP BETWEEN THE CURRENT NUMBER OF INSTANCES AND THE
RESPONSE TIME

0%

20%

40%

60%

80%

100%

120%

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35

Throughput (RPM) DB CPU

0

500

1000

1500

2000

2500

3000

0

1

2

3

4

5

6

Re
sp

on
se

 ti
m

e

N
um

be
r o

f i
ns

ta
nc

es

Current Number of Instances Response time (ms)

FIGURE 60 THE RELATIONSHIP BETWEEN THE THROUGHPUT AND THE DB
CPU UTILIZATION.

7.4.4 M5.8XLARGE (32 CPU) EC2, M5.4XLARGE DB (16 CPU)

This test is using the most powerful EC2 instance type chosen by the team members, with

32 CPU cores per instance, 128 GB of RAM and a 16 CPU cores database.

Starting with one instance, the response time and throughput are equal to 2694ms, 9046 rpm

respectively. Under full load, the system scales out to 5 instances with the configuration mentioned

above, reaching response time and throughput equal to 1577ms, 35571 rpm respectively.

Figure 25 shows the relation between the throughput and the number of instances in the

system, the system can scale up when the throughput increases and is also able to keep up good

with high throughput.

In Figure 26, it can be noticed that there is an inconsistency in the response time, due to the

database bug that was unknown during conducting this test, which also affected the throughput

and caused some performance drops.

Figure 27 relates the database CPU usage with the response time. Notably, that the database

high CPU usage at the end of the test caused a huge response time spike.

TABLE 6:M5.8XLARGE (32 CPU) EC2, M5.4XLARGE DB (16 CPU) RAW TEST DATA

0 Current Number of Instances Response time (ms) Time DB CPU
1939 1 2129 1:55 10%
9046 1 2694 1:56 15%
9039 1 2576 1:57 18%
9043 1 2563 1:58 18%
9050 1 2542 1:59 18%
9038 1 2552 2:00 18%
9028 1 2337 2:01 18%
9046 1 2546 2:02 18%
9045 1 2527 2:03 18%
9027 2 2834 2:04 18%
9054 2 3271 2:05 18%
9093 2 3152 2:06 18%
9094 2 3332 2:07 18%

14789 2 2687 2:08 18%
16753 3 2539 2:09 32%
19689 3 1804 2:10 27%
20662 3 1698 2:11 54%
17972 3 2189 2:12 36%
18071 3 2024 2:13 35%
23084 3 1973 2:14 44%
26897 4 1789 2:15 61%
31781 4 1224 2:16 82%
25763 4 1124 2:17 67%
28581 4 1018 2:18 67%
34237 4 852 2:19 91%
33753 4 743 2:20 98%
34040 4 847 2:21 99%
34021 4 780 2:22 98%
33699 4 394 2:23 97%
25793 4 289 2:24 92%
26913 4 1515 2:25 56%
33867 5 1677 2:26 99%
34061 5 1659 2:27 99%
34404 5 1655 2:28 99%
35230 5 1611 2:29 99%
35737 5 1583 2:30 99%
35571 5 1577 2:31 99%

FIGURE 63: THE RELATIONSHIP BETWEEN THE THROUGHPUT AND THE RESPONSE TIME.

0

1

2

3

4

5

6

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25 30 35 40

Throughput (RPM) Current Number of Instances

0

500

1000

1500

2000

2500

3000

3500

0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25 30 35 40

Throughput (RPM) Response time (ms)

FIGURE 62 THE RELATIONSHIP BETWEEN THE THROUGHPUT AND THE
NUMBER OF INSTANCES.

FIGURE 64 THE RELATIONSHIP BETWEEN THE RESPONSE TIME AND THE CURRENT NUMBER OF
INSTANCES

FIGURE 65 THE RELATIONSHIP BETWEEN THE RESPONSE TIME AND THE DB CPU

0

1

2

3

4

5

6

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

N
um

be
r o

f i
ns

ta
nc

es

Re
sp

on
se

 ti
m

e

Time

Response time (ms) Current Number of Instances

0%

20%

40%

60%

80%

100%

120%

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

DB
 C

PU

Re
sp

on
se

 T
im

e

Time

Response time (ms) DB CPU

7.4.5 M5.4XLARGE (16 CPU) EC2, M5.4XLARGE DB (16 CPU) (4 READ REPLICAS)

 It can be noted that the previous tests had a really bad performance in terms of response

time. A webserver typically should aim for lower than 200ms response time to be considered

reliable. After investigating and debugging, the team was able to locate and fix the issue.

 The system is using Django Object Relational Mapping (ORM) to access the database. Due

to misconfigured queries, the system was calling the database 160 times for a single page. This

caused the system to overwhelm the database with unnecessary database hits and as a result, the

performance hit was really high.

 Even when the database queries were fixed, the database usage was still high and causing

some issues, so horizontal scaling for the database was done.

Four databases read replicas were created along with the master database. The system

configuration is the same as in the test 7.5.3. The performance gain from the fixes are very

noticeable.

The raw data is shown at Table 4. The response time in the beginning was starting from

800ms. After fully scaling out to 5 instances, the response time got down to 187ms. This huge

improvement is related to the fixes mentioned previously. In the next figures, it’s interesting to

observe that the number of instances is proportional to the throughput (1:1 relation). Thanks to

reading replicas, the database is no longer a bottleneck and average CPU utilization reaches 30%

under full load.

TABLE 7: M5.4XLARGE (16 CPU) EC2, M5.4XLARGE DB (16 CPU) (4 READ REPLICAS) RAW TEST DATA

Throughput
(RPM) Current Number of Instances Response time

(ms) Time Average DB
CPU

6272 1 891.854532 1:04 6%
6307 1 883.8143644 1:05 7%
6349 1 855.3223448 1:06 6%
6358 1 858.1405661 1:07 8%
6372 1 849.3012853 1:08 5%
6279 1 862.4880957 1:09 8%
6308 1 857.3266921 1:10 7%
6363 1 857.4333091 1:11 9%
9897 2 577.7220209 1:12 10%

12725 2 443.8271742 1:13 9%
12575 2 443.0477578 1:14 11%
12591 2 442.8021668 1:15 11%
12681 2 442.8311896 1:16 10%
12715 2 443.0913081 1:17 11%
12708 2 443.6010511 1:18 11%
12544 2 447.4306824 1:19 10%
12662 2 440.606537 1:20 10%
18876 3 307.4983206 1:21 17%
18925 3 303.7387376 1:22 15%
18945 3 303.8823518 1:23 16%
18827 3 305.4328165 1:24 16%
17699 3 279.1139371 1:25 14%
25197 4 232.5979481 1:26 21%
25200 4 232.3260859 1:27 22%
26948 4 217.1942588 1:28 24%
30827 5 188.6309186 1:29 27%
30903 5 188.1206039 1:30 28%
30963 5 187.5250058 1:31 27%
30938 5 187.6114712 1:32 30%
30951 5 187.2296994 1:33 30%

FIGURE 66 THE RELATIONSHIP BETWEEN RESPONSE TIME AND THROUGHPUT

FIGURE 67 RELATIONSHIP BETWEEN THE RESPONSE TIME AND THE CURRENT NUMBER OF
INSTANCES

0

5000

10000

15000

20000

25000

30000

35000

0
100
200
300
400
500
600
700
800
900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Re
qu

es
ts

 P
er

 M
in

ut
e

Re
sp

on
se

 T
im

e

Time

Response time (ms) Throughput (RPM)

0

1

2

3

4

5

6

0
100
200
300
400
500
600
700
800
900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

N
um

be
r O

f I
ns

ta
nc

es

Re
sp

on
se

 T
im

e

Time

Response time (ms) Current Number of Instances

FIGURE 68 RELATIONSHIP BETWEEN THE RESPONSE TIME AND THE CURRENT NUMBER OF
INSTANCES

FIGURE 69 THE RELATIONSHIP BETWEEN THE THROUGHPUT AND THE AVERAGE DB CPU

0

1

2

3

4

5

6

0
100
200
300
400
500
600
700
800
900

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

N
um

be
r O

f I
ns

ta
nc

es

Re
sp

on
se

 T
im

e

Time

Response time (ms) Current Number of Instances

0%

5%

10%

15%

20%

25%

30%

35%

0

5000

10000

15000

20000

25000

30000

35000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

DB
 C

PU

Th
ro

ug
hp

ut

Time

Throughput (RPM) Average DB CPU

7.5 END-USER TESTS

An end-user test was done to test the system from higher-levels. The team starts simulating

end-users’ behavior by asking users to do virtual shopping and store-owners to create their own

stores in the system. The team has created a questionnaire that seeks end-users feedback on the

experience and have them fill it up. This questionnaire was divided into 3 sections:

• System Usability Scale

• Use Case Usability Scale

• Further Questions (advanced questions that were asked to more experienced users of

the system, where their answers will reflect exactly how the system behaves and how

does it work).

The team has collected 62 end-users’ responses, and the statistics of their answers are as

follows:

7.5.1 SYSTEM USABILITY SCALE

FIGURE 70 SYSTEM USABILITY SCALE TESTING STATISTICS

FIGURE 71 SYSTEM USABILITY SCALE TESTING STATISTICS

FIGURE 72 SYSTEM USABILITY SCALE TESTING STATISTICS

7.5.2 USE CASE USABILITY SCALE

FIGURE 73 USE CASE USABILITY SCALE TESTING STATISTICS

FIGURE 74 USE CASE USABILITY SCALE TESTING STATISTICS

FIGURE 75 USE CASE USABILITY SCALE TESTING STATISTICS

FIGURE 76 USE CASE USABILITY SCALE TESTING STATISTICS

7.5.3 FURTHER QUESTIONS

FIGURE 77 FURTHER QUESTIONS TESTING STATISTICS

FIGURE 78 FURTHER QUESTIONS TESTING STATISTICS

FIGURE 79 FURTHER QUESTIONS TESTING STATISTICS

FIGURE 80 FURTHER QUESTIONS TESTING STATISTICS

FIGURE 81 FURTHER QUESTIONS TESTING STATISTICS

FIGURE 82 FURTHER QUESTIONS TESTING STATISTICS

FIGURE 83 FURTHER QUESTIONS TESTING STATISTICS

FIGURE 84 FURTHER QUESTIONS TESTING STATISTICS

FIGURE 85 FURTHER QUESTIONS TESTING STATISTICS

8. TOOLS AND COMPONENT REUSE

During working on the project, a method to develop reusable components had to be

constructed. The team has found a library that offered a framework to construct reusable template

components for the user interface. Unfortunately, the library was deprecated since 2015. Team

members, however, have decided to fork the library and refactor the codebase to meet the new

requirements and make the work with the user interface intuitive.

Django-components (Mohammed Alhaddar, 2019), is the name of the library that the team

refactored, allowing it to function again for new versions of Django and adding more features to

keep up with the requirements. a new parser and compiler for the template engine had to be written

to make the library work again.

The reusable UI components the team constructed are:

• Button.

• Expandable Card.

• Store and product list.

• Pagination buttons.

Each component can have separate HTML, CSS and JavaScript files, with separate attributes

to allow modifications in all the user interfaces both mobile and desktop, all can be reused with

one line of code, following the “don’t repeat yourself” (DRY) principle.

9. MACHINE LEARNING

Machine learning (ML) algorithms were implemented in the system to enhance the user

experience while using the shopping system. In the following sections, two algorithms will be

discussed. One is implemented using a recommendation model, and the other is built using the k-

means clustering model. Both algorithms are aiming to bring product recommendations to the user.

9.1 COLLECTING DATA

The first step in machine learning is gathering the correct data. The team has constructed a

logging system that logs the user’s interactions with the website in specific views, then saving the

log into the database, allowing it to be extracted later when building ML models.

The logging behavior is implemented in a middleware that every request in the system has

to go through, extracting the important features to be saved, such as:

• Request Method

• Path of the request

• User ID

• Is an anonymous user

• Visited product, category, store if any

• Longitude and latitude coordinates

• City

• IP Address

The user city is determined by the IP Address, using a special lookup table in the database

that contains all the IP address ranges and their information. The longitude and latitude, however,

are based on two methods:

1. IP Address

2. GPS using Geolocation browser API.

Using Geolocation API, the user will receive a prompt to allow accessing location

permissions from the browser. If the user agrees on sharing the location, then the exact location

coordinates from the GPS will be stored in the database with any subsequent calls. Otherwise, the

longitude and latitude will be determined using the IP lookup table in the database as an

approximation to the exact location.

9.2 GEOHASH CLUSTERING

 The first ML algorithm is based on the users’ coordinates to get the popular products in the

current geographic cluster. Formally, Given Longitude X and latitude Y, retrieve the top ten

popular products in the current geographic cluster, popularity is based on product page visits. The

log data is sufficient as a dataset to build this model.

 Geohashes are used to divide the entire world map into regions/clusters. it encodes

geographic regions into short strings consisting of both alphabets and numbers, ranging between

length of 1 up to 12 characters. Each level consists of a 4*8 grid, totaling 32 clusters per level

(Figure 27). For example, given a string with a single character “t”, this will specify the entire

cluster marked with letter t in Figure 27. Implying that the longer the string, the more exact the

location will be.

 The team has decided to split the entire world map into clusters of area that is equal to 25

KM2. To reach this precision in geohashs, a string of 5 characters is used as in Figure 28.

 Given that the logs are storing the exact longitude and latitude, special libraries were used

to convert the given coordinates and get the 5th level of the geohash cluster. After that, a process

to generate the model will be executed as follows:

1. Extract the system logs.

2. Build a list of clusters that has active users.

3. Get product-specific logs.

4. Build a pivot table concerning clusters and all the logged products in the system. The

cells will contain the number of times product X has been visited in cluster Y. (See

Table below)

FIGURE 86 FIRST LEVEL OF GEOHASH

FIGURE 87 5TH LEVEL OF GEOHASH

5. Normalize the cells

6. Rank the products in each cluster based on popularity (visit count)

7. For each region, Insert top 10 product recommendations inside the region model.

FIGURE 88 GENERATED PIVOT TABLE

 Once the data is populated, the system will try to get the location and find the top products

that are in the cluster populated by the recommendation model mentioned above.

 To test the model, random product visits with random users are simulated. The coordinates

of the random visits were scattered uniformly around Kuwait City and nearby governorates. A

script was written to generate a heat map from the logs, to observe the user’s activity from the log

data. Figure 30 shows a heat map of the generated product visits by the simulation.

FIGURE 89 HEATMAP OF THE LOG ACTIVITY

The users’ location is faked to a random point inside the heat map, giving different

recommendations based on the user’s location:

Longitude, Latitude Geohash Area Recommended Product IDs’

29.332326,48.065551 tj4nv Salmiya 12873, 12615, 7599, 8811, 9120, 9531, 12340, 6682,

7909, 7916

29.297987,48.043971 tj4nt Bayan 12892, 6668, 12615, 12874, 6396, 7599, 8811, 9531,

6682, 7064

29.281205, 48.004221 tj4ns Alzahra 6396, 7270, 7599, 9531, 12340, 12728, 7909, 9054,

9356, 12892

29.368715, 47.991339 tj4ph Kuwait City 6396, 7270, 9120, 9531, 7909, 7916, 10579, 11216,

11389, 12114

9.3 K-MEANS

K-means (geeksforgeeks, 2019) as a machine learning algorithm relies on clustering similar

data units together and provides a prediction methodology that when given a data unit returns the

proper cluster the data most likely belongs to. The project used K-means clustering to cluster

products as similar products that have the same name/description in clusters and used these clusters

to predict and recommend products for a certain user depending on his/her product browsing

history. That being said, any user who uses the system, the system collects browsing history for

that user to gather information about what products the user is interested in, then these products

are fed to the algorithm which recommends other products that are similar in name and description

to the ones that the user already saw. Doing this enables the algorithm to produce more appropriate

results and give better recommendations to each user separately. Moreover, the algorithm also

ranks the browsed products by the user using a scoring technique that ranks products depending

on how many times the user saw, thus the products that score the most are the ones that are fed to

the algorithm and recommendations are proposed according to them.

After running the K-means algorithm and getting clusters as a result, users’ profiles are

created which hold the most common words extracted from the most products a user is interested

in. These words are then used against the clusters to extract products that are similar or include

the words the user is interested in and the result will be displayed to the user as recommended

products.
The algorithm works following these steps in order:

1. Read and normalize all the logs in the system, thus get the users browsing history.

This step enables the products to be discovered and be fed to the Kmeans algorithm.

2. Read and normalize all product data in the system to be then fed to the algorithm when

the users’ most popular products are determined.

3. Count the logs (browsing history) of each user in the system and eliminate users who

have less than 5 logs.

This step ensures that the algorithm has enough data about each user to parse and improves

the quality or recommended products.

4. Calculate the popularity of the product for the users who passed step 3.

This step assigns a score number to the products which are most visited in the system to be

later used in general recommendations based on the geolocation of a user.

5. Normalize the products’ names and descriptions to be fed to the algorithm.

This step ensures that products are converted to values that can be fed to the algorithm.

6. Create user profiles for all the users who passed step 3.

These profiles are then used to predict products a user is most interested in.

7. Cluster products and predict users’ interests by using their profiles.

This is the final step that gets the actual results of the algorithm were each user profile is

used to calculate the most popular words (taken from browsed products names and descriptions) a

user is interested in and are given to the K-means clusters to predict similar products a user may

also be interested in.

The following diagrams show how the results of the algorithm are presented to the user.

When a user tries to see any product details, he/she will be offered product recommendations based

on the past products the user already saw, this ensures that the user style and type in products get

improved whenever a user clicks on a recommended product. Collecting data about a user

browsing history in the system ensures that the future results for the user are going to be more

accurate as more data about the user is going to be included in his/her profile that will produce

more accurate recommendations for the specific user. Moreover, as can be clearly seen throughout

the diagram, a subset of the recommended products for a user is shown, while the rest of the set is

kept to be recommended in other places to avoid the static look and feel of the recommendation

system and to give the user a broader set of products to choose from. The bellow diagram was

taken from a test user that is interested in boy’s clothing; it can be clearly seen that all the

recommended products are for boy’s clothing as all the user’s browsing history is focused on this

type of product. Multiple refreshes/products pages offer the same type of recommended product

as well. This proves that the algorithm is working as expected and can be tested with almost no

effort using a dummy user.

FIGURE 90 PRODUCTS RECOMMENDATION INSIDE PRODUCT DETAIL VIEW.

FIGURE 91 ANOTHER PRODUCTS RECOMMENDATIONS FOR THE SAME USER.

9.4 MORE ON MACHINE LEARNING

As a bonus on the machine learning using the K-means clustering and grouping products by

scores they make given how many times each product is visited, it was reasonable and almost

proofed that users who belong to a geo-region could be interested in the same set of products, thus

the following was done. When collecting the logs of the users’ browsing history on the website,

and when each product gets its score as the number of visits, sort the products on the store in

descending order to get the most popular products in the system. After getting the set of the most

popular products in the system, this set is saved and is displayed to users depending on their

location. For example, is product X scored the highest score given the region is Y, then each user

logs into the system from region Y will be offered product X as a recommendation. As can be

clearly seen that X and Y are sets of products and users respectively, thus it can make sense to

offer users from the same region the most popular products in their region. However, this algorithm

cannot be classified as a machine learning algorithm in any means but doing so proved a success

and it adds more dynamic behavior to the website. Moreover, these products are only

recommended to the users on the homepage of the website, which means they will not be

recommended to users specifically and will not be shown as similar products in any means.

FIGURE 92 GENERAL RECOMMENDATIONS BASED ON GEOLOCATION.

To conclude, Datashop offered E-commerce services alongside other features such as

scalability, reusability, extensibility, and machine learning techniques to enrich the user experience

in the system. The system has implemented many requirements and features to allow users to

enjoy using it while the architecture of the system was designed to allow for more requirements

and features to be implemented. Many design decisions were made to drive the system into the

reusability field and enable the system to be more reusable and extensible. The system is based

on a website that offers an interface for all types of users both using a PC or a Mobile phone to use

and interact with the system. The system is mainly built using Python programming language and

it uses several frontend programming languages and techniques to deliver the desired user

experience. Many tests were done on the system to verify and validate it, and full documentation

was presented in this report.

Many technical lessons were learned, but all pour into the work on the design of web apps

and how to manage risks and challenges. The team has learned to manage time effectively, prepare

plans for work, and make communication shorter and more informative. The team has also learned

to control and prepare for challenges that may stop the development of the system and think deeply

to avoid or eliminate risks which may arise from design decisions that were, or about to be taken.

One of the vital lessons learned from working on such a project is that nothing comes easy, and

quick solutions may prove to be invalid sooner than expected, and detailed elaboration and search

methodology have to be developed to find the optimal solutions for each problem faced.

10. CONCLUSIONS AND LESSONS LEARNED

Team members worked equally and effectively to make this project alive, this includes

working on all the planning tasks, programming tasks, and testing tasks. It is hard to measure each

member’s contribution as tasks were divided according to experience and bravery to handle a new

task, while the whole team participated in solving problems that a team member is facing.

However, some tasks were assigned to a single team member due to his/her knowledge in the field,

while the other members kept their focus on other tasks, as for example, Mohammad Alhaddar

took the lead in dealing with AWS and designing the system architecture, while Sheikha took the

most planning parts and interactions with outer personas, and finally Abdulrahman was focused

on creating views and user experience. A detailed percentage cannot be determined well, but for

approximation, the team agreed that Alhaddar has done 40% of the work, while both Abdulrahman

and Sheikha both did 30% of the total work. Moreover, the team members also overlapped each

other’s tasks either offering refinement or fixing bugs, thus as for the team opinion the project is

one unit that was created equally by the whole team members.

FIGURE 93 TEAM CONTRIBUTIONS CHART.

40%

30%

30%

Contribution Percentage

Mohammad Shiekha Abdulrahman

11. TEAM MEMBERS TASKS AND CONTRIBUTIONS

AtlassianTeam. (2019, 11 25). What is Scrum? . Retrieved from Atlassian:
https://www.atlassian.com/agile/scrum

Bhalla, P. (2019, 8 2). What is eCommerce Business and How does it Work. Retrieved from shiprocket:
https://www.shiprocket.in/blog/what-is-ecommerce-how-it-operates/

geeksforgeeks. (2019, 11 25). K means Clustering. Retrieved from geeksforgeeks:
https://www.geeksforgeeks.org/k-means-clustering-introduction/

Linkeit-Blog. (2019). What is Amazon Route 53? Retrieved from Linkeit Blog:
https://www.linkeit.com/blog/what-is-amazon-route-53

Mohammed Alhaddar, S. A. (2019, 11 1). Django Components. Retrieved from Github:
https://github.com/mohammedalhaddar/django-components

postgreSQLTutorial. (2019). What is PostgreSQL? Retrieved from postgresqltutorial:
http://www.postgresqltutorial.com/what-is-postgresql/

Rouse, M. (2014, 4). Amazon Machine Image (AMI) . Retrieved from SearchAws:
https://searchaws.techtarget.com/definition/Amazon-Machine-Image-AMI

Rouse, M. (2018, 11). Amazon S3 . Retrieved from SearchAWS:
https://searchaws.techtarget.com/definition/Amazon-Simple-Storage-Service-Amazon-S3

ScrumTeam. (2019, 11 25). What is Scrum? . Retrieved from Scrum:
https://www.scrum.org/resources/what-is-scrum

SumoLogic-Team. (2019). What is Amazon RDS? Retrieved from Sumo Logic:
https://www.sumologic.com/insight/what-is-amazon-rds/

vsupalov. (2019). vsupalov. Retrieved from What Is Gunicorn, and What Does It Do?:
https://vsupalov.com/what-is-gunicorn/

Yadav, K. (2019, 10 14). Understanding Amazon EC2 Terminology. Retrieved from HackerNoon:
https://hackernoon.com/understanding-amazon-ec2-terminology-85be19d0af28

Yadav, K. (2019, 10 14). What is Amazon Elastic Load Balancer (ELB). Retrieved from HackerNoon:
https://hackernoon.com/what-is-amazon-elastic-load-balancer-elb-16cdcedbd485

REFERENCES

